AI-Optimized Customer Segmentation for Targeted Cryptocurrency Marketing

Authors

  • Md Abul Khair Solutions Architect, Oracle Consulting, Intellectt Inc., 517 US Highway 1 S Ste 1115 Iselin, NJ, USA

DOI:

https://doi.org/10.18034/abr.v14i1.708

Keywords:

AI, Customer Segmentation, Cryptocurrency, Marketing Strategy, Targeted Marketing, Personalized Marketing

Abstract

This study examines how AI-optimized consumer segmentation may enhance well-focused Bitcoin marketing campaigns. The primary goals are to investigate the theoretical underpinnings, conduct empirical evaluations, and offer valuable recommendations for cryptocurrency marketers. Methodologically, a thorough literature research is carried out, and then actual data from the real world is used for empirical analysis. Important discoveries show that AI-driven segmentation promotes user engagement, increases marketing efficacy, and supports long-term growth in the Bitcoin ecosystem. However, restrictions like algorithmic bias and data privacy issues demand policy changes. To solve these issues, it is advised to implement ethical standards, industry collaboration, educational initiatives, and regulatory guidelines. This study demonstrates how AI-optimized segmentation may revolutionize targeted cryptocurrency marketing by promoting user loyalty, meaningful interaction, and sustainable growth.

Downloads

Download data is not yet available.

References

Anumandla, S. K. R. (2018). AI-enabled Decision Support Systems and Reciprocal Symmetry: Empowering Managers for Better Business Outcomes. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 33-41. https://upright.pub/index.php/ijrstp/article/view/129

Chandy, S. T., Bhardwaj, P. (2020). Adjudicating Cryptocurrencies at the WTO: Potential Threshold and Substantive Issues. Global Jurist, 20(2). https://doi.org/10.1515/gj-2019-0046 DOI: https://doi.org/10.1515/gj-2019-0046

Cousins, K., Subramanian, H., Esmaeilzadeh, P. (2019). A Value-sensitive Design Perspective of Cryptocurrencies: A Research Agenda. Communications of the Association for Information Systems, 45(27). https://doi.org/10.17705/1CAIS.04527 DOI: https://doi.org/10.17705/1CAIS.04527

Dahham, A. Z. D., Ibrahim, A. A. (2020). Effects of Volatility and Trend Indicator for Improving Price Prediction of Cryptocurrency. IOP Conference Series. Materials Science and Engineering, 928(3). https://doi.org/10.1088/1757-899X/928/3/032043 DOI: https://doi.org/10.1088/1757-899X/928/3/032043

Deming, C., Khair, M. A., Mallipeddi, S. R., & Varghese, A. (2021). Software Testing in the Era of AI: Leveraging Machine Learning and Automation for Efficient Quality Assurance. Asian Journal of Applied Science and Engineering, 10(1), 66–76. https://doi.org/10.18034/ajase.v10i1.88 DOI: https://doi.org/10.18034/ajase.v10i1.88

Dhameliya, N., Mullangi, K., Shajahan, M. A., Sandu, A. K., & Khair, M. A. (2020). Blockchain-Integrated HR Analytics for Improved Employee Management. ABC Journal of Advanced Research, 9(2), 127-140. https://doi.org/10.18034/abcjar.v9i2.738 DOI: https://doi.org/10.18034/abcjar.v9i2.738

Dospinescu, O., Caramangiu, M. E. (2018). The Key Success Factors for an M-Learning Cryptocurrency Application. Informatica Economica, 22(2), 14-24. https://doi.org/10.12948/issn14531305/22.2.2018.02 DOI: https://doi.org/10.12948/issn14531305/22.2.2018.02

Hassani, H., Huang, X., Silva, E. (2018). Big-Crypto: Big Data, Blockchain and Cryptocurrency. Big Data and Cognitive Computing, 2(4), 34. https://doi.org/10.3390/bdcc2040034 DOI: https://doi.org/10.3390/bdcc2040034

Khair, M. A. & Sandu, A. K. (2023). Blockchain-Optimized Supply Chain Traceability System for Transparent Logistics. Journal of Fareast International University, 6(1), 27-38.

Khair, M. A. (2018). Security-Centric Software Development: Integrating Secure Coding Practices into the Software Development Lifecycle. Technology & Management Review, 3, 12-26. https://upright.pub/index.php/tmr/article/view/124

Khair, M. A. (2022). Smart Contracts for Secure and Transparent Payroll Management. Asian Accounting and Auditing Advancement, 13(1), 25–35. https://4ajournal.com/article/view/90

Khair, M. A. (2023). Blockchain-Enabled Marketing Analytics for Enhanced Campaign Transparency. American Journal of Trade and Policy, 10(2), 65–76. https://doi.org/10.18034/ajtp.v10i2.701 DOI: https://doi.org/10.18034/ajtp.v10i2.701

Khair, M. A., Tejani, J. G., Sandu, A. K., & Shajahan, M. A. (2020). Trade Policies and Entrepreneurial Initiatives: A Nexus for India’s Global Market Integration. American Journal of Trade and Policy, 7(3), 107–114. https://doi.org/10.18034/ajtp.v7i3.706 DOI: https://doi.org/10.18034/ajtp.v7i3.706

Koehler, S., Dhameliya, N., Patel, B., & Anumandla, S. K. R. (2018). AI-Enhanced Cryptocurrency Trading Algorithm for Optimal Investment Strategies. Asian Accounting and Auditing Advancement, 9(1), 101–114. https://4ajournal.com/article/view/91

Li, X., Whinston, A. B. (2020). Analyzing Cryptocurrencies. Information Systems Frontiers, 22(1), 17-22. https://doi.org/10.1007/s10796-019-09966-2 DOI: https://doi.org/10.1007/s10796-019-09966-2

Limba, T., Novikovas, A., Stankevicius, A., Andrulevicius, A., Tvaronaviciene, M. (2020). Big Data Manifestation in Municipal Waste Management and Cryptocurrency Sectors: Positive and Negative Implementation Factors. Sustainability, 12(7), 2862. https://doi.org/10.3390/su12072862 DOI: https://doi.org/10.3390/su12072862

Limba, T., Stankevicius, A., Andrulevicius, A. (2019). Cryptocurrency as Disruptive Technology: Theoretical Insights. Entrepreneurship and Sustainability Issues, 6(4), 2068-2080. https://doi.org/10.9770/jesi.2019.6.4(36) DOI: https://doi.org/10.9770/jesi.2019.6.4(36)

Maddula, S. S. (2018). The Impact of AI and Reciprocal Symmetry on Organizational Culture and Leadership in the Digital Economy. Engineering International, 6(2), 201–210. https://doi.org/10.18034/ei.v6i2.703 DOI: https://doi.org/10.18034/ei.v6i2.703

Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2019). From Data to Insights: Leveraging AI and Reciprocal Symmetry for Business Intelligence. Asian Journal of Applied Science and Engineering, 8(1), 73–84. https://doi.org/10.18034/ajase.v8i1.86 DOI: https://doi.org/10.18034/ajase.v8i1.86

Mahadasa, R., Ande, J. R. P. K., Varghese, A., & Khair, M. A. (2022). Application of High-Pressure Processing in Food Preservation: Impact on Microbial Safety and Nutritional Quality. Malaysian Journal of Medical and Biological Research, 9(2), 71-80. https://mjmbr.my/index.php/mjmbr/article/view/686

Misra, S., Kashyap, V., Poonacha, K. B., Mukund, A., Parameshwar, H. S. (2020). CryptoCurrency: A Black and White Analysis. International Journal of Information Systems and Social Change, 11(2), 24-40. https://doi.org/10.4018/IJISSC.2020040103 DOI: https://doi.org/10.4018/IJISSC.2020040103

Mullangi, K. (2017). Enhancing Financial Performance through AI-driven Predictive Analytics and Reciprocal Symmetry. Asian Accounting and Auditing Advancement, 8(1), 57–66. https://4ajournal.com/article/view/89

Mullangi, K., Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2018). Artificial Intelligence, Reciprocal Symmetry, and Customer Relationship Management: A Paradigm Shift in Business. Asian Business Review, 8(3), 183–190. https://doi.org/10.18034/abr.v8i3.704 DOI: https://doi.org/10.18034/abr.v8i3.704

Nguyen, H., Liu, B., Parikh, N. Y. (2020). Exploring the Short-term Momentum Effect in the Cryptocurrency Market. Evolutionary and Institutional Economics Review, 17(2), 425-443. https://doi.org/10.1007/s40844-020-00176-z DOI: https://doi.org/10.1007/s40844-020-00176-z

Nuryyev, G., Yu-Ping, W., Achyldurdyyeva, J., Jaw, B-S., Yeh, Y-S. (2020). Blockchain Technology Adoption Behavior and Sustainability of the Business in Tourism and Hospitality SMEs: An Empirical Study. Sustainability, 12(3), 1256. https://doi.org/10.3390/su12031256 DOI: https://doi.org/10.3390/su12031256

Rungvithu, T., Kerdvibulvech, C. (2019). Conversational Commerce and CryptoCurrency Research in Urban Office Employees in Thailand. International Journal of E-Collaboration, 15(3), 34-48. https://doi.org/10.4018/IJeC.2019070103 DOI: https://doi.org/10.4018/IJeC.2019070103

Sandu, A. K., Surarapu, P., Khair, M. A., & Mahadasa, R. (2018). Massive MIMO: Revolutionizing Wireless Communication through Massive Antenna Arrays and Beamforming. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 22-32. https://upright.pub/index.php/ijrstp/article/view/125

Sejung, P., Park, H. W. (2020). Diffusion of Cryptocurrencies: Web Traffic and Social Network Attributes as Indicators of Cryptocurrency Performance. Quality and Quantity, 54(1), 297-314. https://doi.org/10.1007/s11135-019-00840-6 DOI: https://doi.org/10.1007/s11135-019-00840-6

Shajahan, M. A. (2018). Fault Tolerance and Reliability in AUTOSAR Stack Development: Redundancy and Error Handling Strategies. Technology & Management Review, 3, 27-45. https://upright.pub/index.php/tmr/article/view/126

Stolarski, P., Lewoniewski, W., Abramowicz, W. (2020). Cryptocurrencies Perception Using Wikipedia and Google Trends. Information, 11(4), 234. https://doi.org/10.3390/info11040234 DOI: https://doi.org/10.3390/info11040234

Sun, W., Dedahanov, A. T., Shin, H. Y., Kim, K. S. (2020). Switching Intention to Crypto-currency Market: Factors Predisposing Some Individuals to Risky Investment. PLoS One, 15(6), e0234155. https://doi.org/10.1371/journal.pone.0234155 DOI: https://doi.org/10.1371/journal.pone.0234155

Tejani, J. G. (2017). Thermoplastic Elastomers: Emerging Trends and Applications in Rubber Manufacturing. Global Disclosure of Economics and Business, 6(2), 133-144. https://doi.org/10.18034/gdeb.v6i2.737 DOI: https://doi.org/10.18034/gdeb.v6i2.737

Tejani, J. G., Khair, M. A., & Koehler, S. (2021). Emerging Trends in Rubber Additives for Enhanced Performance and Sustainability. Digitalization & Sustainability Review, 1(1), 57-70. https://upright.pub/index.php/dsr/article/view/130

Ying, D., Patel, B., & Dhameliya, N. (2017). Managing Digital Transformation: The Role of Artificial Intelligence and Reciprocal Symmetry in Business. ABC Research Alert, 5(3), 67–77. https://doi.org/10.18034/ra.v5i3.659 DOI: https://doi.org/10.18034/ra.v5i3.659

Ying, D., Shajahan, M. A., Khair, M. A., & Sandu, A. K. (2023). Ultra-Reliable Low-Latency Communication (URLLC) in 5G Networks: Enabling Mission-Critical Applications. Engineering International, 11(1), 43–58. https://doi.org/10.18034/ei.v11i1.707 DOI: https://doi.org/10.18034/ei.v11i1.707

Downloads

Published

2024-04-30

How to Cite

Khair, M. A. (2024). AI-Optimized Customer Segmentation for Targeted Cryptocurrency Marketing. Asian Business Review, 14(1), 19-30. https://doi.org/10.18034/abr.v14i1.708

Similar Articles

11-20 of 113

You may also start an advanced similarity search for this article.