AI-Enhanced IMC: Leveraging Data Analytics for Targeted Marketing Campaigns

Authors

  • Narasimha Rao Boinapalli
  • Kazi Ahmed Farhan
  • Abhishekar Reddy Allam
  • Md. Nizamuddin
  • Narayana Reddy Bommu Sridharlakshmi

DOI:

https://doi.org/10.18034/abr.v13i3.729

Keywords:

Artificial Intelligence, Integrated Marketing Communications (IMC), Targeted Marketing, Real-Time Optimization, Customer Segmentation, Sentiment Analysis, Data Analytics

Abstract

Data analytics to improve targeted marketing efforts examines how artificial intelligence (AI) transforms Integrated Marketing Communications (IMC). The main focus is AI technology's effects on customization, real-time marketing, and client segmentation. The secondary data-based study reviews academic literature, industry publications, and case studies from Netflix, Coca-Cola, Sephora, and Starbucks. Major studies show that AI improves customization, real-time optimization, and accurate targeting, improving engagement, customer happiness, and campaign performance. However, data privacy, algorithmic prejudice, and ethics are issues. The report emphasizes the need for robust data security and fair AI rules that balance innovation and consumer protection. Responsible AI marketing requires robust legal frameworks and ethical standards to address these difficulties.

Downloads

Download data is not yet available.

Author Biographies

  • Narasimha Rao Boinapalli

    Senior Data Engineer, Weisiger Group, 6605 W W.T. Harris Blvd, Charlotte, NC 28269, USA

  • Kazi Ahmed Farhan

    Assistant Professor, School of Business, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
    ORCID

  • Abhishekar Reddy Allam

    Software Developer, City National Bank, Los Angeles, CA, USA

  • Md. Nizamuddin

    Research Fellow, Faculty of Business and Economics, Universiti Malaya, Kuala Lumpur, Malaysia

  • Narayana Reddy Bommu Sridharlakshmi

    Sap Master Data Consultant, Data Solutions Inc., 28345 Beck Road, Suite 406, WIXOM, MI 48393, USA

References

Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96

Batola, M. (2019). The Impact of Artificial Intelligence on Supply Chain Management: An Analytical of Retail Industry. NeuroQuantology, 17(5), 101 - 105. https://doi.org/10.48047/nq.2019.17.05.2072 DOI: https://doi.org/10.48047/nq.2019.17.05.2072

Bohnenberger, M. C., Schmidt, S., Damacena, C., Lorente, F. J. B. (2019). Internal Marketing: A Model for Implementation and Development. Dimensión Empresarial, 17(1), 7-22. https://doi.org/10.15665/dem.v17i1.1657 DOI: https://doi.org/10.15665/dem.v17i1.1657

Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.

Boinapalli, N. R. (2023). AI-Driven Predictive Analytics for Risk Management in Financial Markets. Silicon Valley Tech Review, 2(1), 41-53.

Cruz, T. B., Rose, S. W., Lienemann, B. A., Byron, M. J., Meissner, H. I. (2019). Pro-tobacco Marketing and Anti-tobacco Campaigns Aimed at Vulnerable Populations: A Review of the Literature. Tobacco Induced Diseases, 17. https://doi.org/10.18332/tid/111397 DOI: https://doi.org/10.18332/tid/111397

D'Arco, M., Lo Presti, L., Marino, V., Resciniti, R. (2019). Embracing AI and Big Data in Customer Journey Mapping: From Literature Review to a Theoretical Framework. Innovative Marketing, 15(4), 102-115. https://doi.org/10.21511/im.15(4).2019.09 DOI: https://doi.org/10.21511/im.15(4).2019.09

Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157

Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769 DOI: https://doi.org/10.18034/gdeb.v10i2.769

Hildebrand, C. (2019). The Machine Age of Marketing: How Artificial Intelligence Changes the Way People Think, Act, and Decide. NIM Marketing Intelligence Review, 11(2), 11. https://doi.org/10.2478/nimmir-2019-0010 DOI: https://doi.org/10.2478/nimmir-2019-0010

Jankowski, J., Zioio, M., Karczmarczyk, A., Watróbski, J. (2018). Towards Sustainability in Viral Marketing with User Engaging Supporting Campaigns. Sustainability, 10(1), 15. https://doi.org/10.3390/su10010015 DOI: https://doi.org/10.3390/su10010015

Jarek, K., Mazurek, G. (2019). Marketing and Artificial Intelligence. Central European Business Review, 8(2), 46-55. https://doi.org/10.18267/j.cebr.213 DOI: https://doi.org/10.18267/j.cebr.213

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97

Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672

Liu, G., Liston-heyes, C., Ko, W-w. (2010). Employee Participation in Cause-Related Marketing Strategies: A Study of Management Perceptions from British Consumer Service Industries. Journal of Business Ethics: JBE, 92(2), 195-210. https://doi.org/10.1007/s10551-009-0148-3 DOI: https://doi.org/10.1007/s10551-009-0148-3

Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.

Moosmayer, D. C., Fuljahn, A. (2010). Consumer Perceptions of Cause Related Marketing Campaigns. The Journal of Consumer Marketing, 27(6), 543-549. https://doi.org/10.1108/07363761011078280 DOI: https://doi.org/10.1108/07363761011078280

Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.

Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.

Te, V., Ford, P., Schubert, L. (2019). Exploring Social Media Campaigns Against Sugar-sweetened Beverage Consumption: A Systematic Search. Cogent Medicine, 6(1). https://doi.org/10.1080/2331205X.2019.1607432 DOI: https://doi.org/10.1080/2331205X.2019.1607432

Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.

Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159

Downloads

Published

2023-12-31

How to Cite

Boinapalli, N. R., Farhan, K. A., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). AI-Enhanced IMC: Leveraging Data Analytics for Targeted Marketing Campaigns. Asian Business Review, 13(3), 87-94. https://doi.org/10.18034/abr.v13i3.729

Similar Articles

31-40 of 182

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)