Big Data Analytics for Business Management: Driving Innovation and Competitive Advantage
DOI:
https://doi.org/10.18034/abr.v14i1.728Keywords:
Big Data, Competitive Advantage, Data-Driven Decision Making, Predictive Analytics, Business Intelligence, Data Mining, Strategic ManagementAbstract
The study aims to investigate how Big Data Analytics may revolutionize modern business management by fostering innovation and providing a competitive edge. The study looks at the adoption rates, strategic implementation, and effects of Big Data Analytics on organizational performance indicators like revenue growth, customer acquisition, retention, and market share. It thoroughly evaluates the literature and case studies and analyzes future trends. The results highlight how businesses use BI tools, data visualization strategies, and advanced analytics capabilities to boost operational effectiveness and spur revenue growth. These developments highlight the growing use and strategic significance of big data analytics. However, to guarantee the appropriate and fair implementation of Big Data Analytics in company management practices, issues like data privacy and security concerns call for solid data governance frameworks and governmental interventions. The report offers insightful information and policy recommendations for businesses looking to use data-driven tactics to confidently and nimbly negotiate the challenges of the modern digital economy.
Downloads
References
Addimulam, S. (2024). Digitalization and AI for Sustainable Development: Expectations from the Sustainable Action Conference 2024 (SAC 2.0). Digitalization & Sustainability Review, 4(1), 1-15. https://upright.pub/index.php/dsr/article/view/156
Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687
Addimulam, S., Rahman, K., Karanam, R. K., & Natakam, V. M. (2021). AI-Powered Diagnostics: Revolutionizing Medical Research and Patient Care. Technology & Management Review, 6, 36-49. https://upright.pub/index.php/tmr/article/view/155
Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
Ahmmed. S., Sachani, D. K., Natakam, V. M., Karanam, R. K. (2021). Stock Market Fluctuations and Their Immediate Impact on GDP. Journal of Fareast International University, 4(1), 1-6. https://www.academia.edu/121248146
Akter, S., Wamba, S. F. (2016). Big Data Analytics in E-commerce: A Systematic Review and Agenda for Future Research. Electronic Markets, 26(2), 173-194. https://doi.org/10.1007/s12525-016-0219-0 DOI: https://doi.org/10.1007/s12525-016-0219-0
Anitha, P., Patil, M. M. (2018). A Review on Data Analytics for Supply Chain Management: A Case Study. International Journal of Information Engineering and Electronic Business, 14(5), 30. https://doi.org/10.5815/ijieeb.2018.05.05 DOI: https://doi.org/10.5815/ijieeb.2018.05.05
Asadullah, A., Rahman, K., Azad, M. M. (2021). Accurate and Predictable Cardiovascular Disease Detection by Machine Learning. Journal of Cardiovascular Disease Research, 12(3), 448-454.
Brinch, M. (2018). Understanding the Value of Big Data in Supply Chain Management and its Business Processes: Towards a Conceptual Framework. International Journal of Operations & Production Management, 38(7), 1589-1614. https://doi.org/10.1108/IJOPM-05-2017-0268 DOI: https://doi.org/10.1108/IJOPM-05-2017-0268
Deming, C., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Natakam, V. M., & Karanam, R. K. (2023). Sustainable Digitization: How U.S. Tech Leaders are Shaping the Global Future. Digitalization & Sustainability Review, 3(1), 35-47. https://upright.pub/index.php/dsr/article/view/153
Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762 DOI: https://doi.org/10.18034/apjee.v8i2.762
Dezi, L., Santoro, G., Gabteni, H., Pellicelli, A. C. (2018). The Role of Big Data in Shaping Ambidextrous Business Process Management: Case Studies from the Service Industry. Business Process Management Journal, 24(5), 1163-1175. https://doi.org/10.1108/BPMJ-07-2017-0215 DOI: https://doi.org/10.1108/BPMJ-07-2017-0215
Fadziso, T., Mohammed, R., Kothapalli, K. R. V., Mohammed, M. A., Karanam, R. K. (2022). Deep Learning Approaches for Signal and Image Processing: State-of-the-Art and Future Directions. Silicon Valley Tech Review, 1(1), 14-34.
Ge, M. (2018). The Study of “Big Data” to Support Internal Business Strategists. IOP Conference Series. Earth and Environmental Science, 108(4). https://doi.org/10.1088/1755-1315/108/4/042090 DOI: https://doi.org/10.1088/1755-1315/108/4/042090
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Hazen, B. T., Skipper, J. B., Boone, C. A., Hill, R. R. (2018). Back in Business: Operations Research in Support of Big Data Analytics for Operations and Supply Chain Management. Annals of Operations Research, 270(1-2), 201-211. https://doi.org/10.1007/s10479-016-2226-0 DOI: https://doi.org/10.1007/s10479-016-2226-0
Ittmann, H. W. (2015). The Impact of Big Data and Business Analytics on Supply Chain Management. Journal of Transport and Supply Chain Management; 9(1). https://doi.org/10.4102/jtscm.v9i1.165 DOI: https://doi.org/10.4102/jtscm.v9i1.165
Kache, F., Seuring, S. (2017). Challenges and Opportunities of Digital Information at the Intersection of Big Data Analytics and Supply Chain Management. International Journal of Operations & Production Management, 37(1), 10-36. https://doi.org/10.1108/IJOPM-02-2015-0078 DOI: https://doi.org/10.1108/IJOPM-02-2015-0078
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Kasemsap, K. (2017). Big Data Management: Advanced Issues and Approaches. International Journal of Organizational and Collective Intelligence, 7(3), 44-55. https://doi.org/10.4018/IJOCI.2017070104 DOI: https://doi.org/10.4018/IJOCI.2017070104
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663
Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.
Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755 DOI: https://doi.org/10.18034/abcjar.v7i2.755
Mohammed, R. & Pasam, P. (2020). Autonomous Drones for Advanced Surveillance and Security Applications in the USA. NEXG AI Review of America, 1(1), 32-53.
Mohammed, R. (2021). Code Refactoring Strategies for Enhancing Robotics Software Maintenance. International Journal of Reciprocal Symmetry and Theoretical Physics, 8, 41-50. https://upright.pub/index.php/ijrstp/article/view/152
Mohammed, R. (2022). Artificial Intelligence-Driven Robotics for Autonomous Vehicle Navigation and Safety. NEXG AI Review of America, 3(1), 21-47.
Mohammed, R. (2023). Integrating SQA into the Robotic Software Development Lifecycle. ABC Journal of Advanced Research, 12(1), 31-44. https://doi.org/10.18034/abcjar.v12i1.763 DOI: https://doi.org/10.18034/abcjar.v12i1.763
Natakam, V. M., Nizamuddin, M., Tejani, J. G., Yarlagadda, V. K., Sachani, D. K., & Karanam, R. K. (2022). Impact of Global Trade Dynamics on the United States Rubber Industry. American Journal of Trade and Policy, 9(3), 131–140. https://doi.org/10.18034/ajtp.v9i3.716 DOI: https://doi.org/10.18034/ajtp.v9i3.716
Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., & Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity, Art and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751 DOI: https://doi.org/10.18034/ajhal.v6i2.751
Nizamuddin, M., Natakam, V. N., Kothapalli, K. R. V., Raghunath Kashyap Karanam, R. K., Addimulam, S. (2020). AI in Marketing Analytics: Revolutionizing the Way Businesses Understand Consumers. NEXG AI Review of America, 1(1), 54-69.
Pappas, I. O., Mikalef, P., Giannakos, M. N., Krogstie, J., Lekakos, G. (2018). Big Data and Business Analytics Ecosystems: Paving the way Towards Digital Transformation and Sustainable Societies. Information Systems and eBusiness Management, 16(3), 479-491. https://doi.org/10.1007/s10257-018-0377-z DOI: https://doi.org/10.1007/s10257-018-0377-z
Pasam, P., Kothapalli, K. R. V., Mohammed, R., Ying, D. (2023). Integrating Data Remediation Strategies in Robotic Data Processing. American Digits: Journal of Computing and Digital Technologies, 1(1), 90-104.
Phillips-Wren, G., Iyer, L. S., Kulkarni, U., Ariyachandra, T. (2015). Business Analytics in the Context of Big Data: A Roadmap for Research. Communications of the Association for Information Systems, 37(23). https://doi.org/10.17705/1CAIS.03723 DOI: https://doi.org/10.17705/1CAIS.03723
Rahman, K. (2017). Digital Platforms in Learning and Assessment: The Coming of Age of Artificial Intelligence in Medical Checkup. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 1-5. https://upright.pub/index.php/ijrstp/article/view/3
Rahman, K. (2021). Biomarkers and Bioactivity in Drug Discovery using a Joint Modelling Approach. Malaysian Journal of Medical and Biological Research, 8(2), 63-68. https://doi.org/10.18034/mjmbr.v8i2.585 DOI: https://doi.org/10.18034/mjmbr.v8i2.585
Rahman, K., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). Leveraging AI for Chronic Disease Management: A New Horizon in Medical Research. Malaysian Journal of Medical and Biological Research, 9(2), 81-90. https://mjmbr.my/index.php/mjmbr/article/view/691
Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.
Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94
Vennapusa, S. C. R., Pydipalli, R., Anumandla, S. K. R., Pasam, P. (2022). Innovative Chemistry in Rubber Recycling: Transforming Waste into High-Value Products. Digitalization & Sustainability Review, 2(1), 30-42.
Watson, H. J. (2014). Tutorial: Big Data Analytics: Concepts, Technologies, and Applications. Communications of the Association for Information Systems, 34, 65. https://doi.org/10.17705/1CAIS.03462 DOI: https://doi.org/10.17705/1CAIS.03465
Ying, D., & Addimulam, S. (2022). Innovative Additives for Rubber: Improving Performance and Reducing Carbon Footprint. Asia Pacific Journal of Energy and Environment, 9(2), 81-88. https://doi.org/10.18034/apjee.v9i2.753 DOI: https://doi.org/10.18034/apjee.v9i2.753
Ying, D., Kothapalli, K. R. V., Mohammed, M. A., Mohammed, R., & Pasam, P. (2018). Building Secure and Scalable Applications on Azure Cloud: Design Principles and Architectures. Technology & Management Review, 3, 63-76. https://upright.pub/index.php/tmr/article/view/149
Ying, D., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). The Role of Polymer Blends in Enhancing the Properties of Recycled Rubber. ABC Journal of Advanced Research, 11(2), 115-126. https://doi.org/10.18034/abcjar.v11i2.757 DOI: https://doi.org/10.18034/abcjar.v11i2.757
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Narayana Reddy Bommu Sridharlakshmi; Raghunath Kashyap Karanam; Narasimha Rao Boinapalli; Abhishekar Reddy Allam; Marcus Rodriguez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Asian Business Review is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.