Cryptography Converges with AI in Financial Systems: Safeguarding Blockchain Transactions with AI
DOI:
https://doi.org/10.18034/abr.v12i3.742Keywords:
Cryptography, Artificial Intelligence, Blockchain, Financial Systems, Blockchain Security, Fraud Detection, Cryptographic Algorithms, Decentralized Finance (DeFi)Abstract
This paper examines how encryption and AI protect financial blockchain transactions. As blockchain technology grows more important in decentralized finance, AI must be included to solve cybersecurity issues. The research focuses on how AI improves cryptography systems, blockchain-based financial operations, and transaction security. Secondary data from the literature, peer-reviewed publications, and case studies are analyzed to synthesize AI-blockchain cryptography expertise. AI provides real-time anomaly identification, fraud prevention, predictive analytics, consensus mechanism optimization, and key management improvements, boosting blockchain security. Traditional cryptography methods become more adaptable and robust to emerging threats using AI. According to the research, the computational complexity of AI-driven solutions and AI model biases are constraints. Regulatory frameworks must be modified to ensure transparency, accountability, and compliance with AI-enhanced cryptography systems. This research shows that AI can strengthen blockchain transactions, indicating that AI and cryptography will shape safe and efficient financial systems in the future.
Downloads
References
Abdullah, R. S., Faizal, M. A. (2018). Block Chain: Cryptographic Method in Fourth Industrial Revolution. International Journal of Computer Network and Information Security, 10(11), 9. https://doi.org/10.5815/ijcnis.2018.11.02 DOI: https://doi.org/10.5815/ijcnis.2018.11.02
Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.
Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762 DOI: https://doi.org/10.18034/apjee.v8i2.762
Devarapu, K. (2020). Blockchain-Driven AI Solutions for Medical Imaging and Diagnosis in Healthcare. Technology & Management Review, 5, 80-91. https://upright.pub/index.php/tmr/article/view/165
Devarapu, K. (2021). Advancing Deep Neural Networks: Optimization Techniques for Large-Scale Data Processing. NEXG AI Review of America, 2(1), 47-61.
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776 DOI: https://doi.org/10.18034/apjee.v6i2.776
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770 DOI: https://doi.org/10.18034/abcjar.v10i2.770
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769 DOI: https://doi.org/10.18034/gdeb.v10i2.769
Gurtu, A., Johny, J. (2019). Potential of Blockchain Technology in Supply Chain Management: A Literature Review. International Journal of Physical Distribution & Logistics Management, 49(9), 881-900. https://doi.org/10.1108/IJPDLM-11-2018-0371 DOI: https://doi.org/10.1108/IJPDLM-11-2018-0371
Justinia, T. (2019). Blockchain Technologies: Opportunities for Solving Real-World Problems in Healthcare and Biomedical Sciences. Acta Informatica Medica, 27(4), 284-291. https://doi.org/10.5455/aim.2019.27.284-291 DOI: https://doi.org/10.5455/aim.2019.27.284-291
Kamisetty, A., Onteddu, A. R., Kundavaram, R. R., Gummadi, J. C. S., Kothapalli, S., Nizamuddin, M. (2021). Deep Learning for Fraud Detection in Bitcoin Transactions: An Artificial Intelligence-Based Strategy. NEXG AI Review of America, 2(1), 32-46.
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123 DOI: https://doi.org/10.18034/ajase.v8i1.123
Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. Retrieved from https://4ajournal.com/article/view/97
Kothapalli, S. (2021). Blockchain Solutions for Data Privacy in HRM: Addressing Security Challenges. Journal of Fareast International University, 4(1), 17-25. https://jfiu.weebly.com/uploads/1/4/9/0/149099275/2021_3.pdf
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672
Makridakis, S., Christodoulou, K. (2019). Blockchain: Current Challenges and Future Prospects/Applications. Future Internet, 11(12), 258. https://doi.org/10.3390/fi11120258 DOI: https://doi.org/10.3390/fi11120258
Manikyala, A. (2022). Sentiment Analysis in IoT Data Streams: An NLP-Based Strategy for Understanding Customer Responses. Silicon Valley Tech Review, 1(1), 35-47.
Narsina, D. (2020). The Integration of Cybersecurity, IoT, and Fintech: Establishing a Secure Future for Digital Banking. NEXG AI Review of America, 1(1), 119-134. https://nexgaireview.weebly.com/uploads/9/9/8/2/9982776/2020.8.pdf
Narsina, D., Devarapu, K., Kamisetty, A., Gummadi, J. C. S., Richardson, N., & Manikyala, A. (2021). Emerging Challenges in Mechanical Systems: Leveraging Data Visualization for Predictive Maintenance. Asian Journal of Applied Science and Engineering, 10(1), 77-86. https://doi.org/10.18034/ajase.v10i1.124 DOI: https://doi.org/10.18034/ajase.v10i1.124
Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
Niranjanamurthy, M., Nithya, B. N., Jagannatha, S. (2019). Analysis of Blockchain Technology: Pros, Cons and SWOT. Cluster Computing, suppl. 6, 22, 14743-14757. https://doi.org/10.1007/s10586-018-2387-5 DOI: https://doi.org/10.1007/s10586-018-2387-5
Onteddu, A. R., Rahman, K., Roberts, C., Kundavaram, R. R., Kothapalli, S. (2022). Blockchain-Enhanced Machine Learning for Predictive Analytics in Precision Medicine. Silicon Valley Tech Review, 1(1), 48-60. https://www.siliconvalley.onl/uploads/9/9/8/2/9982776/2022.4
Onteddu, A. R., Venkata, S. S. M. G. N., Ying, D., & Kundavaram, R. R. (2020). Integrating Blockchain Technology in FinTech Database Systems: A Security and Performance Analysis. Asian Accounting and Auditing Advancement, 11(1), 129–142. https://4ajournal.com/article/view/99
Ravindran, S. (2019). Blockchain and Building Information Modeling (BIM): Review and Applications in Post-Disaster Recovery. Buildings, 9(6), 149. https://doi.org/10.3390/buildings9060149 DOI: https://doi.org/10.3390/buildings9060149
Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163
Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.
Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Sgantzos, K., Grigg, I. (2019). Artificial Intelligence Implementations on the Blockchain. Use Cases and Future Applications. Future Internet, 11(8), 170. https://doi.org/10.3390/fi11080170 DOI: https://doi.org/10.3390/fi11080170
Song, R., Song, Y., Liu, Z., Tang, M., Zhou, K. (2019). GaiaWorld: A Novel Blockchain System Based on Competitive PoS Consensus Mechanism. Computers, Materials, & Continua, 60(3), 973-987. https://doi.org/10.32604/cmc.2019.06035 DOI: https://doi.org/10.32604/cmc.2019.06035
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771 DOI: https://doi.org/10.18034/apjee.v8i2.771
Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31. https://nexgaireview.weebly.com/uploads/9/9/8/2/9982776/2021.2.pdf
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Xiao-Ling, J., Zhang, M., Zhou, Z., Yu, X. (2019). Application of a Blockchain Platform to Manage and Secure Personal Genomic Data: A Case Study of LifeCODE.ai in China. Journal of Medical Internet Research, 21(9). https://doi.org/10.2196/13587 DOI: https://doi.org/10.2196/13587
Zheng, X-l., Zhu, M-y., Li, Q-b., Chen, C-c., Tan, Y-c. (2019). FinBrain: When Finance Meets AI 2.0. Frontiers of Information Technology & Electronic Engineering, 20(7), 914-924. https://doi.org/10.1631/FITEE.1700822 DOI: https://doi.org/10.1631/FITEE.1700822
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Md. Nizamuddin; Krishna Devarapu; Abhishake Reddy Onteddu; RamMohan Reddy Kundavaram
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Asian Business Review is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.