AI-Augmented Decision-Making in Management Using Quantum Networks

Authors

  • Kishore Mullangi Staff Site Reliability Engineer, Visa Inc., Austin, TX, USA
  • Niravkumar Dhameliya Software Engineer, Therapy Brands, Birmingham, AL, USA
  • Sunil Kumar Reddy Anumandla System Analyst, Texas Municipal League Intergovernmental Risk Pool (TMLIRP), Texas, Austin, USA
  • Vamsi Krishna Yarlagadda SAP Architect, Seattle School District, John Stanford Center for Educational Excellence, USA
  • Dipakkumar Kanubhai Sachani Business Analyst, Arth Energy Corporation, Pittsburgh, Pennsylvania, USA
  • Sai Charan Reddy Vennapusa Sr. Functional Analyst, Costco Wholesale, 3905 Dallas Pkwy, Plano, TX 75093, USA
  • Sai Sirisha Maddula Front End Developer, Delta Airlines, Atlanta, Georgia, USA
  • Bhavik Patel ERP Developer, Teleworld Solutions, Chantilly, VA, USA

DOI:

https://doi.org/10.18034/abr.v13i2.718

Keywords:

Quantum Networks, Artificial Intelligence, Augmented Decision-Making, Quantum Computing, Business Intelligence, Strategic Management

Abstract

Combining artificial intelligence (AI) and quantum networks can revolutionize management decision-making. This study delves into the implications of AI-augmented decision-making using quantum networks, focusing on its primary objectives, methodology, significant findings, and policy implications. By thoroughly examining the latest research, analyzing case studies, and exploring future possibilities, this study investigates the potential of combining AI and quantum computing to improve strategic decision-making, streamline operations, and foster innovation in management. The methodology entails thoroughly analyzing existing literature, carefully examining real-world case studies and a forward-looking forecast of future trends in AI-quantum integration. Significant discoveries emphasize the remarkable computational power and efficiency, enhanced decision-making abilities, and the potential for groundbreaking innovation and disruption that AI-augmented decision-making using quantum networks brings. Nevertheless, the study highlights various constraints and policy implications that need to be considered, such as technical hurdles, ethical concerns, and regulatory structures, to guarantee a responsible and ethical implementation. This study enhances our understanding of the potential impact of AI-augmented decision-making in management, particularly when combined with quantum networks. It emphasizes the need for proactive policy measures to ensure that the benefits of this technology are maximized while risks are minimized.

Downloads

Download data is not yet available.

References

Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687

Ahmmed. S., Sachani, D. K., Natakam, V. M., Karanam, R. K. (2021). Stock Market Fluctuations and Their Immediate Impact on GDP. Journal of Fareast International University, 4(1), 1-6. https://www.academia.edu/121248146

Alexander, R. (2015). Convergent Networked Decision-making Using Group Insights. Complex & Intelligent Systems, 1(1-4), 57-68. https://doi.org/10.1007/s40747-016-0005-9 DOI: https://doi.org/10.1007/s40747-016-0005-9

Anumandla, S. K. R. (2018). AI-enabled Decision Support Systems and Reciprocal Symmetry: Empowering Managers for Better Business Outcomes. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 33-41. https://upright.pub/index.php/ijrstp/article/view/129

Ashtiani, M., Azgomi, M. A. (2016). A Formulation of Computational Trust Based on Quantum Decision Theory. Information Systems Frontiers, 18(4), 735-764. https://doi.org/10.1007/s10796-015-9555-4 DOI: https://doi.org/10.1007/s10796-015-9555-4

Dhameliya, N. (2022). Power Electronics Innovations: Improving Efficiency and Sustainability in Energy Systems. Asia Pacific Journal of Energy and Environment, 9(2), 71-80. https://doi.org/10.18034/apjee.v9i2.752 DOI: https://doi.org/10.18034/apjee.v9i2.752

Dhameliya, N., Mullangi, K., Shajahan, M. A., Sandu, A. K., & Khair, M. A. (2020). Blockchain-Integrated HR Analytics for Improved Employee Management. ABC Journal of Advanced Research, 9(2), 127-140. https://doi.org/10.18034/abcjar.v9i2.738 DOI: https://doi.org/10.18034/abcjar.v9i2.738

Dhameliya, N., Sai Sirisha Maddula, Kishore Mullangi, & Bhavik Patel. (2021). Neural Networks for Autonomous Drone Navigation in Urban Environments. Technology & Management Review, 6, 20-35. https://upright.pub/index.php/tmr/article/view/141

Hammadi, A., Hussain, O. K., Dillon, T., Hussain, F. K. (2013). A Framework for SLA Management in Cloud Computing for Informed Decision Making. Cluster Computing, 16(4), 961-977. https://doi.org/10.1007/s10586-012-0232-9 DOI: https://doi.org/10.1007/s10586-012-0232-9

Khair, M. A., Tejani, J. G., Sandu, A. K., & Shajahan, M. A. (2020). Trade Policies and Entrepreneurial Initiatives: A Nexus for India’s Global Market Integration. American Journal of Trade and Policy, 7(3), 107–114. https://doi.org/10.18034/ajtp.v7i3.706 DOI: https://doi.org/10.18034/ajtp.v7i3.706

Koehler, S., Dhameliya, N., Patel, B., & Anumandla, S. K. R. (2018). AI-Enhanced Cryptocurrency Trading Algorithm for Optimal Investment Strategies. Asian Accounting and Auditing Advancement, 9(1), 101–114. https://4ajournal.com/article/view/91

Li, C., Liu, F., Li, P. (2018). Ising Model of User Behavior Decision in Network Rumor Propagation. Discrete Dynamics in Nature and Society, 2018. https://doi.org/10.1155/2018/5207475 DOI: https://doi.org/10.1155/2018/5207475

Maddula, S. S. (2018). The Impact of AI and Reciprocal Symmetry on Organizational Culture and Leadership in the Digital Economy. Engineering International, 6(2), 201–210. https://doi.org/10.18034/ei.v6i2.703 DOI: https://doi.org/10.18034/ei.v6i2.703

Maddula, S. S. (2023). Evaluating Current Techniques for Detecting Vulnerabilities in Ethereum Smart Contracts. Engineering International, 11(1), 59–72. https://doi.org/10.18034/ei.v11i1.717 DOI: https://doi.org/10.18034/ei.v11i1.717

Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2019). From Data to Insights: Leveraging AI and Reciprocal Symmetry for Business Intelligence. Asian Journal of Applied Science and Engineering, 8(1), 73–84. https://doi.org/10.18034/ajase.v8i1.86 DOI: https://doi.org/10.18034/ajase.v8i1.86

Mohammed, M. A., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Sachani, D. K., & Richardson, N. (2017). Machine Learning-Based Real-Time Fraud Detection in Financial Transactions. Asian Accounting and Auditing Advancement, 8(1), 67–76. https://4ajournal.com/article/view/93

Morcos, M. S. (2008). Modelling Resource Allocation of R&D Project Portfolios Using A Multi-criteria Decision-making Methodology. The International Journal of Quality & Reliability Management, 25(1), 72-86. https://doi.org/10.1108/02656710810843595 DOI: https://doi.org/10.1108/02656710810843595

Mullangi, K. (2017). Enhancing Financial Performance through AI-driven Predictive Analytics and Reciprocal Symmetry. Asian Accounting and Auditing Advancement, 8(1), 57–66. https://4ajournal.com/article/view/89

Mullangi, K., Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2018). Artificial Intelligence, Reciprocal Symmetry, and Customer Relationship Management: A Paradigm Shift in Business. Asian Business Review, 8(3), 183–190. https://doi.org/10.18034/abr.v8i3.704 DOI: https://doi.org/10.18034/abr.v8i3.704

Mullangi, K., Yarlagadda, V. K., Dhameliya, N., & Rodriguez, M. (2018). Integrating AI and Reciprocal Symmetry in Financial Management: A Pathway to Enhanced Decision-Making. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 42-52. https://upright.pub/index.php/ijrstp/article/view/134

Natakam, V. M., Nizamuddin, M., Tejani, J. G., Yarlagadda, V. K., Sachani, D. K., & Karanam, R. K. (2022). Impact of Global Trade Dynamics on the United States Rubber Industry. American Journal of Trade and Policy, 9(3), 131–140. https://doi.org/10.18034/ajtp.v9i3.716 DOI: https://doi.org/10.18034/ajtp.v9i3.716

Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., & Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity, Art and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751 DOI: https://doi.org/10.18034/ajhal.v6i2.751

Patel, B., Mullangi, K., Roberts, C., Dhameliya, N., & Maddula, S. S. (2019). Blockchain-Based Auditing Platform for Transparent Financial Transactions. Asian Accounting and Auditing Advancement, 10(1), 65–80. https://4ajournal.com/article/view/92

Patel, B., Yarlagadda, V. K., Dhameliya, N., Mullangi, K., & Vennapusa, S. C. R. (2022). Advancements in 5G Technology: Enhancing Connectivity and Performance in Communication Engineering. Engineering International, 10(2), 117–130. https://doi.org/10.18034/ei.v10i2.715 DOI: https://doi.org/10.18034/ei.v10i2.715

Pydipalli, R., Anumandla, S. K. R., Dhameliya, N., Thompson, C. R., Patel, B., Vennapusa, S. C. R., Sandu, A. K., & Shajahan, M. A. (2022). Reciprocal Symmetry and the Unified Theory of Elementary Particles: Bridging Quantum Mechanics and Relativity. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 1-9. https://upright.pub/index.php/ijrstp/article/view/138

Rodriguez, M., Shajahan, M. A., Sandu, A. K., Maddula, S. S., & Mullangi, K. (2021). Emergence of Reciprocal Symmetry in String Theory: Towards a Unified Framework of Fundamental Forces. International Journal of Reciprocal Symmetry and Theoretical Physics, 8, 33-40. https://upright.pub/index.php/ijrstp/article/view/136

Sachani, D. K., & Vennapusa, S. C. R. (2017). Destination Marketing Strategies: Promoting Southeast Asia as a Premier Tourism Hub. ABC Journal of Advanced Research, 6(2), 127-138. https://doi.org/10.18034/abcjar.v6i2.746 DOI: https://doi.org/10.18034/abcjar.v6i2.746

Sandu, A. K., Pydipalli, R., Tejani, J. G., Maddula, S. S., & Rodriguez, M. (2022). Cloud-Based Genomic Data Analysis: IT-enabled Solutions for Biotechnology Advancements. Engineering International, 10(2), 103–116. https://doi.org/10.18034/ei.v10i2.712 DOI: https://doi.org/10.18034/ei.v10i2.712

Sarris, C. M., Proto, A. N. (2014). Quantum Models for Decision Making and Opinion Dynamics the Role of the Lie Algebras: The Role of the Lie Algebras. Quality and Quantity, 48(4), 1945-1956. https://doi.org/10.1007/s11135-013-9860-2 DOI: https://doi.org/10.1007/s11135-013-9860-2

Shajahan, M. A. (2021). Next-Generation Automotive Electronics: Advancements in Electric Vehicle Powertrain Control. Digitalization & Sustainability Review, 1(1), 71-88. https://upright.pub/index.php/dsr/article/view/135

Shajahan, M. A. (2022). Bioprocess Automation with Robotics: Streamlining Microbiology for Biotech Industry. Asia Pacific Journal of Energy and Environment, 9(2), 61-70. https://doi.org/10.18034/apjee.v9i2.748 DOI: https://doi.org/10.18034/apjee.v9i2.748

Shajahan, M. A., Richardson, N., Dhameliya, N., Patel, B., Anumandla, S. K. R., & Yarlagadda, V. K. (2019). AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development. Engineering International, 7(2), 161–178. https://doi.org/10.18034/ei.v7i2.711 DOI: https://doi.org/10.18034/ei.v7i2.711

Singh, A. K., Subramanian, N., Pawar, K. S., Bai, R. (2018). Cold Chain Configuration Design: Location-allocation Decision-making using Coordination, Value Deterioration, and Big Data Approximation. Annals of Operations Research, 270(1-2), 433-457. https://doi.org/10.1007/s10479-016-2332-z DOI: https://doi.org/10.1007/s10479-016-2332-z

Song, D. (2017). Decision-Making Process and Information. NeuroQuantology, 15(4). https://doi.org/10.14704/nq.2017.15.4.1096 DOI: https://doi.org/10.14704/nq.2017.15.4.1096

Tucker, J. S., Cullen, J. C., Sinclair, R. R., Wakeland, W. W. (2005). Dynamic Systems and Organizational Decision-Making Processes in Nonprofits. The Journal of Applied Behavioral Science, 41(4), 482-502. https://doi.org/10.1177/0021886305279483 DOI: https://doi.org/10.1177/0021886305279483

Vennapusa, S. C. R., Fadziso, T., Sachani, D. K., Yarlagadda, V. K., & Anumandla, S. K. R. (2018). Cryptocurrency-Based Loyalty Programs for Enhanced Customer Engagement. Technology & Management Review, 3, 46-62. https://upright.pub/index.php/tmr/article/view/137

White, L. C., Pothos, E. M., Busemeyer, J. R. (2015). Insights From Quantum Cognitive Models for Organizational Decision Making. Journal of Applied Research in Memory and Cognition, 4(3), 229-238. https://doi.org/10.1016/j.jarmac.2014.11.002 DOI: https://doi.org/10.1016/j.jarmac.2014.11.002

Yarlagadda, V. K., & Pydipalli, R. (2018). Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity. Engineering International, 6(2), 211–222. https://doi.org/10.18034/ei.v6i2.709 DOI: https://doi.org/10.18034/ei.v6i2.709

Yarlagadda, V. K., Maddula, S. S., Sachani, D. K., Mullangi, K., Anumandla, S. K. R., & Patel, B. (2020). Unlocking Business Insights with XBRL: Leveraging Digital Tools for Financial Transparency and Efficiency. Asian Accounting and Auditing Advancement, 11(1), 101–116. https://4ajournal.com/article/view/94

Ying, D., & Addimulam, S. (2022). Innovative Additives for Rubber: Improving Performance and Reducing Carbon Footprint. Asia Pacific Journal of Energy and Environment, 9(2), 81-88. https://doi.org/10.18034/apjee.v9i2.753 DOI: https://doi.org/10.18034/apjee.v9i2.753

Ying, D., Patel, B., & Dhameliya, N. (2017). Managing Digital Transformation: The Role of Artificial Intelligence and Reciprocal Symmetry in Business. ABC Research Alert, 5(3), 67–77. https://doi.org/10.18034/ra.v5i3.659 DOI: https://doi.org/10.18034/ra.v5i3.659

Yukalov, V. I., Sornette, D. (2017). Quantum Probabilities as Behavioral Probabilities. Entropy, 19(3), 112. https://doi.org/10.3390/e19030112 DOI: https://doi.org/10.3390/e19030112

Yung-Chi, S., Lin, G. T.R., Tzeng, G-H. (2012). A Novel Multi-criteria Decision-making Combining Decision Making Trial and Evaluation Laboratory Technique for Technology Evaluation. Foresight : the Journal of Futures Studies, Strategic Thinking and Policy, 14(2), 139-153. https://doi.org/10.1108/14636681211222410 DOI: https://doi.org/10.1108/14636681211222410

Downloads

Published

2023-08-31

How to Cite

Mullangi, K., Dhameliya, N., Anumandla, S. K. R., Yarlagadda, V. K., Sachani, D. K., Vennapusa, S. C. R., Maddula, S. S., & Patel, B. (2023). AI-Augmented Decision-Making in Management Using Quantum Networks. Asian Business Review, 13(2), 73-86. https://doi.org/10.18034/abr.v13i2.718

Similar Articles

131-140 of 205

You may also start an advanced similarity search for this article.