AI-Driven Data Engineering for Real-Time Public Health Surveillance and Early Outbreak Detection
DOI:
https://doi.org/10.18034/ei.v11i2.732Keywords:
AI-Driven Data Engineering, Public Health Surveillance, Real-Time Detection, Outbreak Prediction, Data Integration, Machine Learning, Epidemiology, Health InformaticsAbstract
This research examines AI-driven data engineering in real-time public health monitoring and early epidemic detection to improve outbreak response speed, accuracy, and effectiveness. The study investigates frameworks and technologies that use electronic health records, social media, and environmental sensors via secondary data review. AI increases epidemic detection and response via sophisticated data integration and analysis, but data quality discrepancies, model interpretability, and privacy problems persist. The research also finds that resource constraints, especially in low-income areas, hinder the broad use of these technologies. Policy implications include standardizing data frameworks to improve integration, establishing AI transparency rules, and strengthening privacy safeguards to retain public confidence. We advocate investing in scalable, cloud-based infrastructures to access AI-driven surveillance technologies equally. Addressing these difficulties will strengthen public health systems' resilience and reactivity to new health risks, improving global health security.
Downloads
References
Addimulam, S., Rahman, K., Karanam, R. K., & Natakam, V. M. (2021). AI-Powered Diagnostics: Revolutionizing Medical Research and Patient Care. Technology & Management Review, 6, 36-49. https://upright.pub/index.php/tmr/article/view/155
Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.
Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
Chattu, V. K., Nanda, A., Chattu, S. K., Kadri, S. M., Knight, A. W. (2019). The Emerging Role of Blockchain Technology Applications in Routine Disease Surveillance Systems to Strengthen Global Health Security. Big Data and Cognitive Computing, 3(2), 25. https://doi.org/10.3390/bdcc3020025
Davies, S. E. (2019). Artificial Intelligence in Global Health. Ethics & International Affairs, 33(2), 181-192. https://doi.org/10.1017/S0892679419000157
Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774
Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776
Gade, P. K. (2023). AI-Driven Blockchain Solutions for Environmental Data Integrity and Monitoring. NEXG AI Review of America, 4(1), 1-16.
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769
Hendriksen, R. S., Lukjancenko, O., Munk, P., Hjelmsø, M. H., Verani, J. R. (2019). Pathogen Surveillance in the Informal Settlement, Kibera, Kenya, using a Metagenomics Approach. PLoS One, 14(10), e0222531. https://doi.org/10.1371/journal.pone.0222531
Kamel Boulos, M. N., Resch, B., Crowley, D. N., Breslin, J. G., Sohn, G. (2011). Crowdsourcing, Citizen Sensing and Sensor Web Technologies for Public and Environmental Health Surveillance and Crisis Management: Trends, OGC Standards and Application Examples. International Journal of Health Geographics, 10, 67. https://doi.org/10.1186/1476-072X-10-67
Kim, H-R., Oem, J-K., Bae, Y-C., Kang, M-S., Lee, H-S. (2013). Application of Real-time Reverse Transcription Polymerase Chain Reaction to the Detection the Matrix, H5 and H7 Genes of Avian Influenza Viruses in Field Samples From South Korea. Virology Journal, 10, 85. https://doi.org/10.1186/1743-422X-10-85
Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123
Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. Retrieved from https://4ajournal.com/article/view/97
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
Manikyala, A., Kommineni, H. P., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). Integrating Cybersecurity Best Practices in DevOps Pipelines for Securing Distributed Systems. ABC Journal of Advanced Research, 12(1), 57-70. https://doi.org/10.18034/abcjar.v12i1.773
Min, J., Gurka, K. K., Kalesan, B., Bian, J., Prosperi, M. (2019). Injury Burden in the United States: Accurate, Reliable, and Timely Surveillance Using Electronic Health Care Data. American Journal of Public Health, 109(12), 1702-1706. https://doi.org/10.2105/AJPH.2019.305306
Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.
Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
Odoom, J. K., Bel-Nono, S., Rodgers, D., Agbenohevi, P. G., Dafeamekpor, C. K. (2012). Troop Education and Avian Influenza Surveillance in Military Barracks in Ghana, 2011. BMC Public Health, 12, 957. https://doi.org/10.1186/1471-2458-12-957
Onteddu, A. R., Venkata, S. S. M. G. N., Ying, D., & Kundavaram, R. R. (2020). Integrating Blockchain Technology in FinTech Database Systems: A Security and Performance Analysis. Asian Accounting and Auditing Advancement, 11(1), 129–142. https://4ajournal.com/article/view/99
Rahman, K. (2017). Digital Platforms in Learning and Assessment: The Coming of Age of Artificial Intelligence in Medical Checkup. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 1-5. https://upright.pub/index.php/ijrstp/article/view/3
Rahman, K., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). Leveraging AI for Chronic Disease Management: A New Horizon in Medical Research. Malaysian Journal of Medical and Biological Research, 9(2), 81-90. https://mjmbr.my/index.php/mjmbr/article/view/691
Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163
Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.
Robertson, C., Yee, L. (2016). Avian Influenza Risk Surveillance in North America with Online Media. PLoS One, 11(11), e0165688. https://doi.org/10.1371/journal.pone.0165688
Rodriguez, M., Rahman, K., Devarapu, K., Sridharlakshmi, N. R. B., Gade, P. K., & Allam, A. R. (2023). GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology. Engineering International, 11(1), 73-84. https://doi.org/10.18034/ei.v11i1.718
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.
Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Vilain, P., Larrieu, S., Mougin-Damour, K., Marianne Dit Cassou, P-J., Weber, M. (2017). Emergency Department Syndromic Surveillance to Investigate the Health Impact and Factors Associated with Alcohol Intoxication in Reunion Island. Emergency Medicine Journal: EMJ, 34(6), 386. https://doi.org/10.1136/emermed-2015-204987
Ying, D., & Addimulam, S. (2022). Innovative Additives for Rubber: Improving Performance and Reducing Carbon Footprint. Asia Pacific Journal of Energy and Environment, 9(2), 81-88. https://doi.org/10.18034/apjee.v9i2.753
Ying, D., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). The Role of Polymer Blends in Enhancing the Properties of Recycled Rubber. ABC Journal of Advanced Research, 11(2), 115-126. https://doi.org/10.18034/abcjar.v11i2.757
Yousefinaghani, S., Dara, R., Poljak, Z., Bernardo, T. M., Sharif, S. (2019). The Assessment of Twitter’s Potential for Outbreak Detection: Avian Influenza Case Study. Scientific Reports (Nature Publisher Group), 9, 1-17. https://doi.org/10.1038/s41598-019-54388-4
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Satya Surya MKLG Gudimetla Naga Venkata
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Engineering International is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.