Navigating the AI Landscape: Sectoral Insights on Integration and Impact


  • Ashish K Saxena Independent Researcher, M. Tech in Computer Science and Engineering (with a focus on Machine Learning and Natural Language Processing), USA



Artificial Intelligence, Machine Technology, Diverse Sectors, Education, Employment, ncome patterns


This study delves into the varied sentiments and attitudes prevalent across the different sectors related to integrating Artificial intelligence (AI). Understanding how sectors perceive and embrace these changes is crucial for informed decision-making and policy formulation as AI technologies continue to thrive in industries. Artificial intelligence is making waves in 2023 as businesses, consumers, and the government benefit from this technology, promising new opportunities, economic growth, and the transformation of different industries. There was so much propaganda surrounding artificial intelligence based on economic factors such as employment, education, income patterns, housing, and food security, and with time, these issues have been proven true or false. AI will have a broadly beneficial effect on society.


Download data is not yet available.


Acemoglu, D. and Restrepo, P. (2017a). Robots and Jobs: Evidence from US Labor Markets. NBER Working Paper no. 23285. National Bureau for Economic Research. DOI:

Acemoglu, D. and Restrepo, P. (2017b). Low-Skill and High-Skill Automation. Working Paper no. 17-12, MIT Department of Economics. DOI:

Agrawal, A., Gans, J. S., & Goldfarb, A. (2019). Exploring the impact of artificial intelligence: Prediction versus judgment. Information Economics and Policy, 47, 1-6. DOI:

Amandolare, S., & Dvorkin, E. (2021). Preparing New Yorkers for the Tech Jobs Driving NYC’s Pandemic Economy. Center for an Urban Future.

Auda, Z. M., & Radhi, S. J. (2022). Artificial Intelligence and Evolution of the Global System. IPRI Journal, 22(1), 91-109. DOI:

Bamatraf, S., Amouri, L., El-Haggar, N., & Moneer, A. (2021). Exploring the Socioeconomic Implications of Artificial Intelligence from Higher Education Student’s Perspective. International Journal of Advanced Computer Science and Applications, 12(6). DOI:

Bellantuono, L., Palmisano, F., Amoroso, N., Monaco, A., Peragine, V., & Bellotti, R. (2023). Detecting the socioeconomic drivers of confidence in government with explainable Artificial Intelligence. Scientific Reports, 13(1), 839. DOI:

Chopra, R., Agrawal, A., Sharma, G. D., Kallmuenzer, A., & Vasa, L. (2023). Uncovering digitization’s organizational, environmental, and socioeconomic sustainability: evidence from existing research. Review of Managerial Science, 1-25. DOI:

De Prado, M. L. (2018). Advances in financial machine learning. John Wiley & Sons.

Dwivedi, P., Sarkar, A. K., Chakraborty, C., Singha, M., & Rojwal, V. (2023). Application of artificial intelligence on post-pandemic situation and lesson learned for prospects. Journal of Experimental & Theoretical Artificial Intelligence, 35(3), 327-344. DOI:

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerization? Technological forecasting and social change, pp. 254–280. DOI:

Gerlich, M. (2023). Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study. Social Sciences, 12(9), 502. DOI:

Grashof, N., & Kopka, A. (2023). Artificial intelligence and radical innovation: an opportunity for all companies? Small Business Economics, 61(2), 771-797. DOI:

Gries, T., & Naudé, W. (2018). Artificial intelligence, jobs, inequality, and productivity: Does aggregate demand matter? IZA DP no. 12005. DOI:

Hadley, J., (2020). Artificial Intelligence and Rising Inequality. Retrieved from:

Huhtamo, E. (2020). The Self-Driving Car: A Media Machine for Posthumans? Artnodes, (26), pp. 1–14. DOI:

Joyce, K., Smith-Doerr, L., Alegria, S., Bell, S., Cruz, T., Hoffman, S. G., & Shestakofsky, B. (2021). Toward a sociology of artificial intelligence: A call for research on inequalities and structural change. Socius, 7, 2378023121999581. DOI:

Jungherr, A. (2023). Artificial Intelligence and Democracy: A Conceptual Framework. Social Media+ Society, 9(3), 20563051231186353. DOI:

Korinek, A., & Stiglitz, J. E. (2018). Artificial intelligence and its implications for income distribution and unemployment. In The economics of artificial intelligence: An agenda (pp. 349-390). University of Chicago Press. DOI:

Koumetio Tekouabou, S. C., Diop, E. B., Azmi, R., & Chenal, J. (2023). Artificial Intelligence Based Methods for Smart and Sustainable Urban Planning: A Systematic Survey. Archives of Computational Methods in Engineering, 30(2), 1421-1438. DOI:

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., ... & Thrun, S. (2011, June). Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV) (pp. 163-168). IEEE. DOI:

Martins, R. M., & Gresse von Wangenheim, C. (2023). Teaching Computing to Middle and High School Students from a Low Socioeconomic Status Background: A Systematic Literature Review. Informatics in Education. DOI:

Meng, C., Juanatas, R., & Niguidula, J. (2023). Influence and Prospect of Artificial Intelligence on the Development of Cultural Industry. In SHS Web of Conferences (Vol. 155, p. 03026). EDP Sciences. DOI:

Nallamothu, P. T., & Cuthrell, K. M. (2023). Artificial Intelligence in Health Sector: Current Status and Future Perspectives. Asian Journal of Research in Computer Science, 15(4), 1-14. DOI:

Nemorin, S., Vlachidis, A., Ayerakwa, H. M., & Andriotis, P. (2023). AI hyped? A horizon scan of discourse on artificial intelligence in education (AIED) and development. Learning, Media and Technology, 48(1), 38-51. DOI:

Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press. DOI:

Nosova, S. S., Norkina, A. N., & Morozov, N. V. (2023). Artificial Intelligence and the Future of the Modern Economy. Инновации и инвестиции, (1), 240-245.

NYC CTO., (2021). AI Strategy.

NYC Report. (2021). The New York City Artificial Intelligence Primer.

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the Health of populations. Science, 366(6464), 447–453. DOI:

Olander. J., and Flagg, M., (2020). AI Hubs in the United States. Georgetown CSET. DOI:

Russell, S. J., & Norvig, P. (2010). Artificial intelligence is a modern approach. London.

Ruvalcaba-Gomez, E. A., & Cifuentes-Faura, J. (2023). Analysis of the perception of digital government and artificial intelligence in the public sector in Jalisco, Mexico. International Review of Administrative Sciences, 00208523231164587. DOI:

Sanina, A., Balashov, A., & Rubtcova, M. (2023). The socioeconomic efficiency of digital government transformation. International Journal of Public Administration, 46(1), 85-96. DOI:

Sanni, M. R. (2023). Technological Challenges of Accounting as a Tool for Socioeconomic Development in Nigeria and the Way. Nigerian Journal of Management Sciences, 24(1a).

Sartori, L., & Theodorou, A. (2022). A sociotechnical perspective for the future of AI: narratives, inequalities, and human control. Ethics and Information Technology, 24(1), 4. DOI:

Scantamburlo, T., Cortés, A., Foffano, F., Barrué, C., Distefano, V., Pham, L., & Fabris, A. (2023). Artificial Intelligence across Europe: A Study on Awareness, Attitude, and Trust. arXiv preprint arXiv:2308.09979.

Sitiris, M., Busari, S. A., Sawari, M. F. M., & Zaim, M. A. (2023). Financing the Development of Artificial Intelligence Maid: An Analysis of Pertinent Fiqhi Issues. Journal of Fatwa Management and Research, 28(3), 21-40. DOI:

Sumathi, S., Manjubarkavi, S., & Gunanithi, P. (2023). 12 Ethnography and Artificial Intelligence. Ethnographic Research in the Social Sciences, 13. DOI:

Ugliotti, F. M., Osello, A., Daud, M., & Yilmaz, O. O. (2023). Enhancing Risk Analysis toward a Landscape Digital Twin Framework: A Multi-Hazard Approach in the Context of a Socioeconomic Perspective. Sustainability, 15(16), 12429. DOI:

UNEVOC. (2021). Understanding the impact of artificial intelligence on skills development, Retrieved from:

Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7-24. DOI:

Wakabayashi, D. (2018). Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam. The New York Times.

Wing, R. (2023). Intelligently Integrating Artificial Intelligent Agents into Economic and Social Systems (Doctoral dissertation, State University of New York at Binghamton).

Wörsdörfer, M. (2023). The EU’s artificial intelligence act: an ordoliberal assessment. AI and Ethics, 1-16. DOI:




How to Cite

Saxena, A. K. (2024). Navigating the AI Landscape: Sectoral Insights on Integration and Impact. Engineering International, 12(1), 9–28.



Peer Reviewed Articles