Artificial Intelligence in Zero-Knowledge Proofs: Transforming Privacy in Cryptographic Protocols
DOI:
https://doi.org/10.18034/ei.v12i1.743Keywords:
Artificial Intelligence, Zero-Knowledge Proofs, Cryptographic Protocols, Privacy-Preserving Systems, Data Privacy, Cryptographic SecurityAbstract
AI and zero-knowledge proofs (ZKPs) may revolutionize cryptographic protocol privacy, as this research shows. The report examines how AI may improve ZKP efficiency, scalability, and security and identifies developing AI-driven privacy-preserving technologies across sectors. The study reviews secondary data from peer-reviewed journals, technical reports, and conference proceedings. Key results show that AI automates proof creation, optimizes verification procedures, and identifies weaknesses, allowing innovative architectures like federated learning mixed with ZKPs for safe, collaborative AI training. The research shows AI's potential to improve privacy in banking, healthcare, and secure identity management. However, concerns about the computational needs of the AI model, explainable systems, and interoperability persist. The policy implications highlight standardization, security framework improvements, and research to solve these shortcomings. The policy should also support openness and accountability in AI-driven cryptography systems to build confidence and acceptance. This paper shows how AI might transform privacy-preserving cryptographic methods and how to overcome their existing limitations to maximize their promise.
Downloads
References
Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.
Allam, A. R., Farhan, K. A., Kommineni, H. P., Deming, C., & Boinapalli, N. R. (2024). Effective Change Management Strategies: Lessons Learned from Successful Organizational Transformations. American Journal of Trade and Policy, 11(1), 17-30. https://doi.org/10.18034/ajtp.v11i1.730
Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
Cortier, V., Kremer, S., Warinschi, B. (2011). A Survey of Symbolic Methods in Computational Analysis of Cryptographic Systems. Journal of Automated Reasoning, 46(3-4), 225-259. https://doi.org/10.1007/s10817-010-9187-9
del Blanco, D. Y. M., Alonso, L. P., Hermida Alonso, J. A. (2018). Review of Cryptographic Schemes applied to Remote Electronic Voting Systems: Remaining Challenges and the Upcoming Post-quantum Paradigm. Open Mathematics, 16(1), 95-112. https://doi.org/10.1515/math-2018-0013
Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762
Devarapu, K. (2020). Blockchain-Driven AI Solutions for Medical Imaging and Diagnosis in Healthcare. Technology & Management Review, 5, 80-91. https://upright.pub/index.php/tmr/article/view/165
Devarapu, K. (2021). Advancing Deep Neural Networks: Optimization Techniques for Large-Scale Data Processing. NEXG AI Review of America, 2(1), 47-61.
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Ding, N., Gu, D. (2010). Precise Bounded-concurrent Zero-knowledge Proofs for NP. Science China. Information Sciences, 53(9), 1738-1752. https://doi.org/10.1007/s11432-010-4056-z
Engel, E. M., Danagoulian, A. (2019). A Physically Cryptographic Warhead Verification System Using Neutron Induced Nuclear Resonances. Nature Communications, 10, 1-10. https://doi.org/10.1038/s41467-019-12386-0
Fadziso, T., Manikyala, A., Kommineni, H. P., & Venkata, S. S. M. G. N. (2023). Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics. Asia Pacific Journal of Energy and Environment, 10(1), 19-28. https://doi.org/10.18034/apjee.v10i1.778
Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774
Farhan, K. A., Onteddu, A. R., Kothapalli, S., Manikyala, A., Boinapalli, N. R., & Kundavaram, R. R. (2024). Harnessing Artificial Intelligence to Drive Global Sustainability: Insights Ahead of SAC 2024 in Kuala Lumpur. Digitalization & Sustainability Review, 4(1), 16-29. https://upright.pub/index.php/dsr/article/view/161
Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776
Gade, P. K. (2023). AI-Driven Blockchain Solutions for Environmental Data Integrity and Monitoring. NEXG AI Review of America, 4(1), 1-16.
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772
Gummadi, J, C. S. (2022). Blockchain-Enabled Healthcare Systems: AI Integration for Improved Patient Data Privacy. Malaysian Journal of Medical and Biological Research, 9(2), 101-110.
Gummadi, J. C. S. (2023). IoT Security in the Banking Sector: Mitigating the Vulnerabilities of Connected Devices and Smart ATMs. Asian Business Review, 13(3), 95-102. https://doi.org/10.18034/abr.v13i3.737
Gummadi, J. C. S. (2024). Cybersecurity in International Trade Agreements: A New Paradigm for Economic Diplomacy. American Journal of Trade and Policy, 11(1), 39-48. https://doi.org/10.18034/ajtp.v11i1.738
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769
Kamisetty, A. (2022). AI-Driven Robotics in Solar and Wind Energy Maintenance: A Path toward Sustainability. Asia Pacific Journal of Energy and Environment, 9(2), 119-128. https://doi.org/10.18034/apjee.v9i2.784
Kamisetty, A., Narsina, D., Rodriguez, M., Kothapalli, S., & Gummadi, J. C. S. (2023). Microservices vs. Monoliths: Comparative Analysis for Scalable Software Architecture Design. Engineering International, 11(2), 99-112. https://doi.org/10.18034/ei.v11i2.734
Kamisetty, A., Onteddu, A. R., Kundavaram, R. R., Gummadi, J. C. S., Kothapalli, S., Nizamuddin, M. (2021). Deep Learning for Fraud Detection in Bitcoin Transactions: An Artificial Intelligence-Based Strategy. NEXG AI Review of America, 2(1), 32-46.
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Kiraz, M. S., Uzunkol, O. (2016). Efficient and Verifiable Algorithms for Secure Outsourcing of Cryptographic Computations. International Journal of Information Security, 15(5), 519-537. https://doi.org/10.1007/s10207-015-0308-7
Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123
Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97
Kothapalli, S. (2021). Blockchain Solutions for Data Privacy in HRM: Addressing Security Challenges. Journal of Fareast International University, 4(1), 17-25. https://jfiu.weebly.com/uploads/1/4/9/0/149099275/2021_3.pdf
Kothapalli, S. (2022). Data Analytics for Enhanced Business Intelligence in Energy-Saving Distributed Systems. Asia Pacific Journal of Energy and Environment, 9(2), 99-108. https://doi.org/10.18034/apjee.v9i2.781
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
Kothapalli, S., Nizamuddin, M., Talla, R. R., Gummadi, J. C. S. (2024). DevOps and Software Architecture: Bridging the Gap between Development and Operations. American Digits: Journal of Computing and Digital Technologies, 2(1), 51-64.
Kulshrestha, A., Rampuria, A., Denton, M., Sreenivas, A. (2017). Cryptographically Secure Multiparty Computation and Distributed Auctions Using Homomorphic Encryption. Cryptography, 1(3). https://doi.org/10.3390/cryptography1030025
Kundavaram, R. R., Onteddu, A. R., Nizamuddin, M., & Devarapu, K. (2023). Cybersecurity Risks in Financial Transactions: Implications for Global Trade and Economic Development. Global Disclosure of Economics and Business, 12(2), 53-66. https://doi.org/10.18034/gdeb.v12i2.787
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
Li, H., Xu, H., Li, B., Feng, D. (2010). On Constant-round Zero-knowledge Proofs of Knowledge for NP-relations. Science China. Information Sciences, 53(4), 788-799. https://doi.org/10.1007/s11432-010-0071-3
Lin, T., Lai, X., Xue, W., Huang, G. (2016). Discussion on the Theoretical Results of White-box Cryptography. Science China. Information Sciences, 59(11), 112101. https://doi.org/10.1007/s11432-015-5474-8
Manikyala, A. (2022). Sentiment Analysis in IoT Data Streams: An NLP-Based Strategy for Understanding Customer Responses. Silicon Valley Tech Review, 1(1), 35-47.
Manikyala, A., Kommineni, H. P., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). Integrating Cybersecurity Best Practices in DevOps Pipelines for Securing Distributed Systems. ABC Journal of Advanced Research, 12(1), 57-70. https://doi.org/10.18034/abcjar.v12i1.773
Manikyala, A., Talla, R. R., Gade, P. K., & Venkata, S. S. M. G. N. (2024). Implementing AI in SAP GTS for Symmetric Trade Analytics and Compliance. American Journal of Trade and Policy, 11(1), 31-38. https://doi.org/10.18034/ajtp.v11i1.733
Narsina, D. (2020). The Integration of Cybersecurity, IoT, and Fintech: Establishing a Secure Future for Digital Banking. NEXG AI Review of America, 1(1), 119-134. https://nexgaireview.weebly.com/uploads/9/9/8/2/9982776/2020.8.pdf
Narsina, D. (2022). Impact of Cybersecurity Threats on Emerging Markets’ Integration into Global Trade Networks. American Journal of Trade and Policy, 9(3), 141-148. https://doi.org/10.18034/ajtp.v9i3.741
Narsina, D., Devarapu, K., Kamisetty, A., Gummadi, J. C. S., Richardson, N., & Manikyala, A. (2021). Emerging Challenges in Mechanical Systems: Leveraging Data Visualization for Predictive Maintenance. Asian Journal of Applied Science and Engineering, 10(1), 77-86. https://doi.org/10.18034/ajase.v10i1.124
Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
Narsina, D., Richardson, N., Kamisetty, A., Gummadi, J. C. S., & Devarapu, K. (2022). Neural Network Architectures for Real-Time Image and Video Processing Applications. Engineering International, 10(2), 131-144. https://doi.org/10.18034/ei.v10i2.735
Nizamuddin, M., Devarapu, K., Onteddu, A. R., & Kundavaram, R. R. (2022). Cryptography Converges with AI in Financial Systems: Safeguarding Blockchain Transactions with AI. Asian Business Review, 12(3), 97-106. https://doi.org/10.18034/abr.v12i3.742
Onteddu, A. R., Rahman, K., Roberts, C., Kundavaram, R. R., Kothapalli, S. (2022). Blockchain-Enhanced Machine Learning for Predictive Analytics in Precision Medicine. Silicon Valley Tech Review, 1(1), 48-60. https://www.siliconvalley.onl/uploads/9/9/8/2/9982776/2022.4
Onteddu, A. R., Venkata, S. S. M. G. N., Ying, D., & Kundavaram, R. R. (2020). Integrating Blockchain Technology in FinTech Database Systems: A Security and Performance Analysis. Asian Accounting and Auditing Advancement, 11(1), 129–142. https://4ajournal.com/article/view/99
Richardson, N., Kothapalli, S., Onteddu, A. R., Kundavaram, R. R., & Talla, R. R. (2023). AI-Driven Optimization Techniques for Evolving Software Architecture in Complex Systems. ABC Journal of Advanced Research, 12(2), 71-84. https://doi.org/10.18034/abcjar.v12i2.783
Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163
Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.
Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
Rodriguez, M., Rahman, K., Devarapu, K., Sridharlakshmi, N. R. B., Gade, P. K., & Allam, A. R. (2023). GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology. Engineering International, 11(1), 73-84. https://doi.org/10.18034/ei.v11i1.718
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771
Talla, R. R. (2022). Integrating Blockchain and AI to Enhance Supply Chain Transparency in Energy Sectors. Asia Pacific Journal of Energy and Environment, 9(2), 109-118. https://doi.org/10.18034/apjee.v9i2.782
Talla, R. R. (2023). Role of Blockchain in Enhancing Cybersecurity and Efficiency in International Trade. American Journal of Trade and Policy, 10(3), 83-90. https://doi.org/10.18034/ajtp.v10i3.736
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40. https://www.siliconvalley.onl/uploads/9/9/8/2/9982776/2023.3_
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40. https://www.siliconvalley.onl/uploads/9/9/8/2/9982776/2023.3_
Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31. https://nexgaireview.weebly.com/uploads/9/9/8/2/9982776/2021.2.pdf
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Xiao-Ling, J., Zhang, M., Zhou, Z., Yu, X. (2019). Application of a Blockchain Platform to Manage and Secure Personal Genomic Data: A Case Study of LifeCODE.ai in China. Journal of Medical Internet Research, 21(9). https://doi.org/10.2196/13587
Yu, Y., Au, M. H., Mu, Y., Tang, S. (2015). Enhanced Privacy of A Remote Data Integrity-checking Protocol for Secure Cloud Storage. International Journal of Information Security, 14(4), 307-318. https://doi.org/10.1007/s10207-014-0263-8
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Abhishake Reddy Onteddu; Samuel Koehler; RamMohan Reddy Kundavaram; Krishna Devarapu; Srinikhita Kothapalli; Deekshith Narsina
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Engineering International is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.