Carrier Concentration in Bulk Perovskite CH3NH3PbI3 Thin Films

Authors

  • Cliff Orori Mosiori Technical University of Mombasa
  • Mogunde Charles Kenyatta University

DOI:

https://doi.org/10.18034/ei.v7i2.475

Keywords:

Bulk Perovskite, Thin Films, Band Edge, Photo Electric

Abstract

Efforts are currently on going on the physics of photo electrics in methyl ammonium lead halide perovskites to unveil the secret of its success in photovoltaics. Since carrier concentration depends on impurity, temperature and other parameters of a semiconductor, herein, an attempt has been made address the relationship between these parameter and carrier concentrations. It was found out that the conventional band edge at 1.58 eV responsible for presenting a blue-shift depends on thickness, temperature and carrier concentration. Thus, in this work, the intrinsic carrier concentration was taken as the number of electrons and it was shown that the observed unusual optical band edge in CH3NH3PbI3 perovskite bulk thin films is about 1.58eV. It was concluded that the band edge is beneficial for photo electric effect by making use of its inhibited radiative recombination.

 

Downloads

Download data is not yet available.

Author Biographies

Cliff Orori Mosiori, Technical University of Mombasa

Department of Mathematics and Physics, Technical University of Mombasa, Mombasa, KENYA

Mogunde Charles, Kenyatta University

Department of Mathematics and Physics, Kenyatta University, Nairobi, KENYA

References

Carlos, F. and Ignacio G. (2008) Revisiting the Effects of the Molecular Structure in the Kinetics of Electron transfer of Quinones: Kinetic Differences in Structural Isomers; J. Mex. Chem. Soc. 52(1), 11-18ISSN 1870-249X.

D’Innocenzo, V.; Grancini, G.; Alcocer, J.; Kandada, S.; Stranks, D.; Lee, M.; Lanzani, G. and Snaith, J. (2014). "Excitons versus free charges in organo-lead tri-halide perovskites". Nature Communications 5.

Eames, C.; Frost, M.; Barnes, F.; Regan, C.; Walsh, A. and Islam, S. (2015). "Ionic transport in hybrid lead iodide perovskite solar cells". Nature Communications 6: 7497.

Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10), 5561-5568.

Hao, F., Stoumpos, C. C., Liu, Z., Chang, R. P., & Kanatzidis, M. G. (2014). Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%. Journal of the American Chemical Society, 136(46), 16411-16419.

Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2014). Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. The journal of physical chemistry letters, 5(16), 2903-2909.

Jeon, N.; Noh, H.; Kim, C.; Yang, S.; Ryu, S. and Seok, I. (2014). "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nature Materials 13 (9): 897–903.

Juarez-Perez, E. J., Sanchez, R. S., Badia, L., Garcia-Belmonte, G., Kang, Y. S., Mora-Sero, I., & Bisquert, J. (2014). Photoinduced giant dielectric constant in lead halide perovskite solar cells. The journal of physical chemistry letters, 5(13), 2390-2394.

Kasha, M. (2012). Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates1, 2. Radiation research, 178(2), AV27-AV34.

Lang, L.; Yang, J.; Liu, H.; Xiang, J. and Gong, G. (2014). First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A 378 (3): 290–293.

Memming, R., & Bahnemann, D. (2015). Semiconductor electrochemistry. John Wiley & Sons.

Minemoto, T. and Murata, M., (2014). "Device modelling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells". Journal of Applied Physics 116 (5): 054505.

Mosconi, E.; Amat, A.; Nazeeruddin, K.; Grätzel, M. and Angelis, F. (2013). "First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications". The Journal of Physical Chemistry C 117 (27): 13902–13913.

Oga, H., Saeki, A., Ogomi, Y., Hayase, S., & Seki, S. (2014). Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. Journal of the American Chemical Society, 136(39), 13818-13825.

Pekola, J. P., Saira, O. P., Maisi, V. F., Kemppinen, A., Möttönen, M., Pashkin, Y. A., & Averin, D. V. (2013). Single-electron current sources: Toward a refined definition of the ampere. Reviews of Modern Physics, 85(4), 1421.

Roche, B., Riwar, R. P., Voisin, B., Dupont-Ferrier, E., Wacquez, R., Vinet, M., & Jehl, X. (2013). A two-atom electron pump. Nature communications, 4, 1581.

Roy, S., & Bagchi, B. (1994). Time dependent solution of generalized Zusman model of outersphere electron transfer reactions: Applications to various experimental situations. The Journal of chemical physics, 100(12), 8802-8816.

Stranks, D.; Eperon, E.; Grancini, G.; Menelaou, C.; Alcocer, M.; Leijtens, T.; Herz, M. and Petrozza, A. (2013). "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber". Science 342 (6156): 341–344.

Sun, X.; Asadpour, R.; Nie, W.; Mohite, A. and Alam, A. (2015). "A Physics-Based Analytical Model for Perovskite Solar Cells". IEEE Journal of Photovoltaics 5(5): 1389–1394. ISSN 2156-3381.

Umari, P.; Mosconi, E. and Angelis, D. (2014). "Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications". Scientific Reports 4.

Wilczek, F. (2014). Majorana and condensed matter physics. arXiv preprint arXiv:1404.0637.

Zhao, Y., & Zhu, K. (2014). CH3NH3PbCl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. The Journal of Physical Chemistry C, 118(18), 9412-9418.

--0--

Downloads

Published

2019-08-10

How to Cite

Mosiori, C. O. ., & Charles, M. . (2019). Carrier Concentration in Bulk Perovskite CH3NH3PbI3 Thin Films. Engineering International, 7(2), 67–72. https://doi.org/10.18034/ei.v7i2.475

Issue

Section

Peer Reviewed Articles