Implementing AI in SAP GTS for Symmetric Trade Analytics and Compliance
DOI:
https://doi.org/10.18034/ajtp.v11i1.733Keywords:
Artificial Intelligence (AI), SAP Global Trade Services (GTS), Symmetric Trade Analytics, Trade Compliance, Natural Language Processing (NLP), Risk ManagementAbstract
SAP Global Trade Services (GTS) uses AI to improve symmetric trade analytics and compliance management. The main goal is to examine how machine learning, natural language processing, and predictive analytics may enhance global trade compliance accuracy, flexibility, and efficiency. Secondary data, including peer-reviewed academic publications, industry reports, and case studies, is analyzed to assess SAP GTS AI integration. Significant results show that AI automates risk assessments, detects abnormalities, and adapts to real-time regulatory changes, improving compliance. AI's symmetric trade analytics gives enterprises data-driven insights across numerous trade operations, boosting decision-making and lowering compliance risks. Data quality, model interpretability, and data security still hinder AI adoption. The paper emphasizes robust data governance frameworks, explainable AI models, and safe data management to address these restrictions. Regulatory organizations should adopt AI audits, transparency, and data protection norms to guarantee responsible AI usage in global trade compliance. SAP GTS may become a strategic, AI-powered tool that improves trade efficiency, reduces compliance risks, and helps firms navigate international trade rules by tackling these difficulties and policy concerns.
Downloads
References
Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
Ajit, D., Donker, H., Patnaik, S. (2014). ERP System Implementation Announcements: Does the Market Cheer or Jeer the Adopters and Vendors?. International Journal of Accounting and Information Management, 22(4), 339-356. https://doi.org/10.1108/IJAIM-10-2013-0059
Badewi, A., Shehab, E., Zeng, J., Mohamad, M. (2018). ERP Benefits Capability Framework: Orchestration Theory Perspective. Business Process Management Journal, 24(1), 266-294. https://doi.org/10.1108/BPMJ-11-2015-0162
Belanche, D., Casaló, L. V., Flavián, C. (2019). Artificial Intelligence in FinTech: Understanding Robo-advisors Adoption Among Customers. Industrial Management & Data Systems, 119(7), 1411-1430. https://doi.org/10.1108/IMDS-08-2018-0368
Bharathi, S., Chandrayan, K. (2017). Application of FMEA to Study the Risk Perception of SMEs Throughout the ERP Adoption Life Cycle. International Journal of Enterprise Information Systems, 13(2), 63-84. https://doi.org/10.4018/IJEIS.2017040105
Boinapalli, N. R., Farhan, K. A., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). AI-Enhanced IMC: Leveraging Data Analytics for Targeted Marketing Campaigns. Asian Business Review, 13(3), 87-94. https://doi.org/10.18034/abr.v13i3.729
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Fadziso, T., Manikyala, A., Kommineni, H. P., & Venkata, S. S. M. G. N. (2023). Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics. Asia Pacific Journal of Energy and Environment, 10(1), 19-28. https://doi.org/10.18034/apjee.v10i1.778
Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774
Gade, P. K. (2023). AI-Driven Blockchain Solutions for Environmental Data Integrity and Monitoring. NEXG AI Review of America, 4(1), 1-16.
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772
Garg, A., Deshmukh, S. G. (2010). Engineering Support Issues for Flexibility in Maintenance: An SAP-LAP Framework. Asia Pacific Journal of Marketing and Logistics, 22(2), 247-270. https://doi.org/10.1108/13555851011026980
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769
Heinzelmann, R. (2017). Accounting Logics as a Challenge for ERP System Implementation: A Field Study of SAP. Journal of Accounting & Organizational Change, 13(2), 162-187. https://doi.org/10.1108/JAOC-10-2015-0085
Hoffmann, J., Weber, I., Kraft, F. M. (2012). SAP Speaks PDDL: Exploiting a Software-Engineering Model for Planning in Business Process Management. The Journal of Artificial Intelligence Research, 44, 587-632. https://doi.org/10.1613/jair.3636
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
Mallipeddi, S. R. (2022). Harnessing AI and IoT Technologies for Sustainable Business Operations in the Energy Sector. Asia Pacific Journal of Energy and Environment, 9(1), 37-48. https://doi.org/10.18034/apjee.v9i1.735
Manikyala, A., Kommineni, H. P., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). Integrating Cybersecurity Best Practices in DevOps Pipelines for Securing Distributed Systems. ABC Journal of Advanced Research, 12(1), 57-70. https://doi.org/10.18034/abcjar.v12i1.773
Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.
Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
Rodriguez, M., Rahman, K., Devarapu, K., Sridharlakshmi, N. R. B., Gade, P. K., & Allam, A. R. (2023). GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology. Engineering International, 11(1), 73-84. https://doi.org/10.18034/ei.v11i1.718
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771
Sushil. (2019). Theory Building Using SAP-LAP Linkages: An Application in the Context of Disaster Management. Annals of Operations Research, 283(1-2), 811-836. https://doi.org/10.1007/s10479-017-2425-3
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.
Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Vlasov, V., Chebotareva, V., Rakhimov, M., Kruglikov, S. (2017). AI User Support System for SAP ERP. Journal of Physics: Conference Series, 913(1). https://doi.org/10.1088/1742-6596/913/1/012001
Yung-Yun, H., Handfield, R. B. (2015). Measuring the Benefits of ERP on Supply Management Maturity Model: A “big data” Method. International Journal of Operations & Production Management, 35(1), 2-25. https://doi.org/10.1108/IJOPM-07-2013-0341
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Aditya Manikyala; Rajasekhar Reddy Talla; Pavan Kumar Gade; Satya Surya MKLG Gudimetla Naga Venkata

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
American Journal of Trade and Policy is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.