Implementing AI in SAP GTS for Symmetric Trade Analytics and Compliance

Authors

  • Aditya Manikyala Java Aws Developer, DPR Solutions Inc., 20130 Lakeview center plaza, Ashburn, VA 20147, USA
  • Rajasekhar Reddy Talla SAP GTS Senior Analyst, Archer Daniels Midland (ADM), 1260 Pacific Ave, Erlanger, KY 41018, USA
  • Pavan Kumar Gade Software Developer, City National Bank, Los Angeles, CA, USA
  • Satya Surya MKLG Gudimetla Naga Venkata Sr Business Application Analyst, 1 Hormel Place, Austin, MN 55912, USA

DOI:

https://doi.org/10.18034/ajtp.v11i1.733

Keywords:

Artificial Intelligence (AI), SAP Global Trade Services (GTS), Symmetric Trade Analytics, Trade Compliance, Natural Language Processing (NLP), Risk Management

Abstract

SAP Global Trade Services (GTS) uses AI to improve symmetric trade analytics and compliance management. The main goal is to examine how machine learning, natural language processing, and predictive analytics may enhance global trade compliance accuracy, flexibility, and efficiency. Secondary data, including peer-reviewed academic publications, industry reports, and case studies, is analyzed to assess SAP GTS AI integration. Significant results show that AI automates risk assessments, detects abnormalities, and adapts to real-time regulatory changes, improving compliance. AI's symmetric trade analytics gives enterprises data-driven insights across numerous trade operations, boosting decision-making and lowering compliance risks. Data quality, model interpretability, and data security still hinder AI adoption. The paper emphasizes robust data governance frameworks, explainable AI models, and safe data management to address these restrictions. Regulatory organizations should adopt AI audits, transparency, and data protection norms to guarantee responsible AI usage in global trade compliance. SAP GTS may become a strategic, AI-powered tool that improves trade efficiency, reduces compliance risks, and helps firms navigate international trade rules by tackling these difficulties and policy concerns.

Downloads

Download data is not yet available.

References

Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96

Ajit, D., Donker, H., Patnaik, S. (2014). ERP System Implementation Announcements: Does the Market Cheer or Jeer the Adopters and Vendors?. International Journal of Accounting and Information Management, 22(4), 339-356. https://doi.org/10.1108/IJAIM-10-2013-0059

Badewi, A., Shehab, E., Zeng, J., Mohamad, M. (2018). ERP Benefits Capability Framework: Orchestration Theory Perspective. Business Process Management Journal, 24(1), 266-294. https://doi.org/10.1108/BPMJ-11-2015-0162

Belanche, D., Casaló, L. V., Flavián, C. (2019). Artificial Intelligence in FinTech: Understanding Robo-advisors Adoption Among Customers. Industrial Management & Data Systems, 119(7), 1411-1430. https://doi.org/10.1108/IMDS-08-2018-0368

Bharathi, S., Chandrayan, K. (2017). Application of FMEA to Study the Risk Perception of SMEs Throughout the ERP Adoption Life Cycle. International Journal of Enterprise Information Systems, 13(2), 63-84. https://doi.org/10.4018/IJEIS.2017040105

Boinapalli, N. R., Farhan, K. A., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). AI-Enhanced IMC: Leveraging Data Analytics for Targeted Marketing Campaigns. Asian Business Review, 13(3), 87-94. https://doi.org/10.18034/abr.v13i3.729

Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160

Fadziso, T., Manikyala, A., Kommineni, H. P., & Venkata, S. S. M. G. N. (2023). Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics. Asia Pacific Journal of Energy and Environment, 10(1), 19-28. https://doi.org/10.18034/apjee.v10i1.778

Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774

Gade, P. K. (2023). AI-Driven Blockchain Solutions for Environmental Data Integrity and Monitoring. NEXG AI Review of America, 4(1), 1-16.

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772

Garg, A., Deshmukh, S. G. (2010). Engineering Support Issues for Flexibility in Maintenance: An SAP-LAP Framework. Asia Pacific Journal of Marketing and Logistics, 22(2), 247-270. https://doi.org/10.1108/13555851011026980

Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157

Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769

Heinzelmann, R. (2017). Accounting Logics as a Challenge for ERP System Implementation: A Field Study of SAP. Journal of Accounting & Organizational Change, 13(2), 162-187. https://doi.org/10.1108/JAOC-10-2015-0085

Hoffmann, J., Weber, I., Kraft, F. M. (2012). SAP Speaks PDDL: Exploiting a Software-Engineering Model for Planning in Business Process Management. The Journal of Artificial Intelligence Research, 44, 587-632. https://doi.org/10.1613/jair.3636

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672

Mallipeddi, S. R. (2022). Harnessing AI and IoT Technologies for Sustainable Business Operations in the Energy Sector. Asia Pacific Journal of Energy and Environment, 9(1), 37-48. https://doi.org/10.18034/apjee.v9i1.735

Manikyala, A., Kommineni, H. P., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). Integrating Cybersecurity Best Practices in DevOps Pipelines for Securing Distributed Systems. ABC Journal of Advanced Research, 12(1), 57-70. https://doi.org/10.18034/abcjar.v12i1.773

Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.

Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98

Rodriguez, M., Rahman, K., Devarapu, K., Sridharlakshmi, N. R. B., Gade, P. K., & Allam, A. R. (2023). GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology. Engineering International, 11(1), 73-84. https://doi.org/10.18034/ei.v11i1.718

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.

Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771

Sushil. (2019). Theory Building Using SAP-LAP Linkages: An Application in the Context of Disaster Management. Annals of Operations Research, 283(1-2), 811-836. https://doi.org/10.1007/s10479-017-2425-3

Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.

Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164

Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.

Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.

Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159

Vlasov, V., Chebotareva, V., Rakhimov, M., Kruglikov, S. (2017). AI User Support System for SAP ERP. Journal of Physics: Conference Series, 913(1). https://doi.org/10.1088/1742-6596/913/1/012001

Yung-Yun, H., Handfield, R. B. (2015). Measuring the Benefits of ERP on Supply Management Maturity Model: A “big data” Method. International Journal of Operations & Production Management, 35(1), 2-25. https://doi.org/10.1108/IJOPM-07-2013-0341

Downloads

Published

2024-04-30

Issue

Section

Policy and Practice Reviews

How to Cite

Manikyala, A., Talla, R. R., Gade, P. K., & Venkata, S. S. M. G. N. (2024). Implementing AI in SAP GTS for Symmetric Trade Analytics and Compliance. American Journal of Trade and Policy, 11(1), 31-38. https://doi.org/10.18034/ajtp.v11i1.733