Stock Market Prediction using Machine Learning: A Systematic Literature Review
DOI:
https://doi.org/10.18034/ajtp.v4i3.521Keywords:
Stock Market, Machine Learning, Predictive AlgorithmsAbstract
Different machine learning algorithms are discussed in this literature review. These algorithms can be used for predicting the stock market. The prediction of the stock market is one of the challenging tasks that must have to be handled. In this paper, it is discussed how the machine learning algorithms can be used for predicting the stock value. Different attributes are identified that can be used for training the algorithm for this purpose. Some of the other factors are also discussed that can have an effect on the stock value.
Downloads
References
Adebiyi, A. A., Ayo, C. K., Adebiyi, M. O., Otokiti, S. O. J. J. o. E. T. i. C., & Sciences, I. (2012). Stock price prediction using neural network with hybridized market indicators. 3(1), 1-9.
Alkhatib, K., Najadat, H., Hmeidi, I., Shatnawi, M. K. A. J. I. J. o. B., Humanities, & Technology. (2013). Stock price prediction using k-nearest neighbor (kNN) algorithm. 3(3), 32-44.
Berry, M. J., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and customer relationship management: John Wiley & Sons.
Bhuriya, D., Kaushal, G., Sharma, A., & Singh, U. (2017). Stock market predication using a linear regression. Paper presented at the 2017 international conference of electronics, communication and aerospace technology (ICECA). DOI: https://doi.org/10.1109/ICECA.2017.8212716
Bonde, G., & Khaled, R. (2012). Stock price prediction using genetic algorithms and evolution strategies. Paper presented at the Proceedings of the International Conference on Genetic and Evolutionary Methods (GEM).
Boone, L., Giorno, C., Richardson, P. J. W. P.-O. F. E. C., & DEPARTMENT, D. E. (1998). Stock Market Fluctuations and Consumption Behaviour: Some Recent Evidence Economics Department Working Papers No. 208.
Chen, A.-S., Leung, M. T., Daouk, H. J. C., & Research, O. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. 30(6), 901-923. DOI: https://doi.org/10.1016/S0305-0548(02)00037-0
Chen, W., Zhang, Y., Yeo, C. K., Lau, C. T., & Lee, B. S. (2017). Stock market prediction using neural network through news on online social networks. Paper presented at the 2017 international smart cities conference (ISC2). DOI: https://doi.org/10.1109/ISC2.2017.8090834
Chen, Y., & Hao, Y. J. E. S. w. A. (2017). A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. 80, 340-355. DOI: https://doi.org/10.1016/j.eswa.2017.02.044
Choudhry, R., Garg, K. J. W. A. o. S., Engineering, & Technology. (2008). A hybrid machine learning system for stock market forecasting. 39(3), 315-318.
Das, D., Uddin, M. S. J. I. j. o. a. i., & applications. (2013). Data mining and neural network techniques in stock market prediction: A methodological review. 4(1), 117. DOI: https://doi.org/10.5121/ijaia.2013.4109
Das, S. P., & Padhy, S. J. I. J. o. C. A. (2012). Support vector machines for prediction of futures prices in Indian stock market. 41(3). DOI: https://doi.org/10.5120/5522-7555
Deepak, R. S., Uday, S. I., Malathi, D. J. I. J. o. P., & Mathematics, A. (2017). Machine learning approach in stock market prediction. 115(8), 71-77.
Fama, E. F. J. T. j. o. B. (1965). The behavior of stock-market prices. 38(1), 34-105. DOI: https://doi.org/10.1086/294743
Fung, G. P. C., Yu, J. X., & Lam, W. (2002). News sensitive stock trend prediction. Paper presented at the Pacific-Asia Conference on Knowledge Discovery and Data Mining. DOI: https://doi.org/10.1007/3-540-47887-6_48
Fung, G. P. C., Yu, J. X., & Lam, W. (2003). Stock prediction: Integrating text mining approach using real-time news. Paper presented at the 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings. DOI: https://doi.org/10.1109/CIFER.2003.1196287
GHOLAMIAN, E., & DAVOODI, S. M. R. (2018). Predicting the direction of stock market prices using random forest.
Gurav, U., & Sidnal, N. (2018). Predict Stock Market Behavior: Role of Machine Learning Algorithms. In Intelligent Computing and Information and Communication (pp. 383-394): Springer. DOI: https://doi.org/10.1007/978-981-10-7245-1_38
Hegazy, O., Soliman, O. S., & Salam, M. A. J. a. p. a. (2014). A machine learning model for stock market prediction.
Henrique, B. M., Sobreiro, V. A., & Kimura, H. J. E. S. w. A. (2019). Literature review: Machine learning techniques applied to financial market prediction. 124, 226-251. DOI: https://doi.org/10.1016/j.eswa.2019.01.012
Hong, T., & Han, I. J. E. S. (2004). Integrated approach of cognitive maps and neural networks using qualitative information on the World Wide Web: the KBNMiner. 21(5), 243-252. DOI: https://doi.org/10.1111/j.1468-0394.2004.00282.x
Hong, T., & Han, I. J. E. s. w. a. (2002). Knowledge-based data mining of news information on the Internet using cognitive maps and neural networks. 23(1), 1-8. DOI: https://doi.org/10.1016/S0957-4174(02)00022-2
Hu, Z., Zhu, J., & Tse, K. (2013). Stocks market prediction using support vector machine. Paper presented at the 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering. DOI: https://doi.org/10.1109/ICIII.2013.6703096
Huang, W., Nakamori, Y., Wang, S.-Y. J. C., & research, o. (2005). Forecasting stock market movement direction with support vector machine. 32(10), 2513-2522. DOI: https://doi.org/10.1016/j.cor.2004.03.016
Imandoust, S. B., Bolandraftar, M. J. I. J. o. E. R., & Applications. (2013). Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background. 3(5), 605-610.
Khaidem, L., Saha, S., & Dey, S. R. J. a. p. a. (2016). Predicting the direction of stock market prices using random forest.
Khan, W., Ghazanfar, M. A., Azam, M. A., Karami, A., Alyoubi, K. H., Alfakeeh, A. S. J. J. o. A. I., & Computing, H. (2020). Stock market prediction using machine learning classifiers and social media, news. 1-24. DOI: https://doi.org/10.1007/s12652-020-01839-w
Kohara, K. (2003). Selective-learning-rate approach for stock market prediction by simple recurrent neural networks. Paper presented at the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. DOI: https://doi.org/10.1007/978-3-540-45224-9_21
Kohara, K., Ishikawa, T., Fukuhara, Y., Nakamura, Y. J. I. S. i. A., Finance, & Management. (1997). Stock price prediction using prior knowledge and neural networks. 6(1), 11-22. DOI: https://doi.org/10.1002/(SICI)1099-1174(199703)6:1<11::AID-ISAF115>3.0.CO;2-3
Kumar, V. U., Krishna, A., Neelakanteswara, P., & Basha, C. Z. (2020). Advanced Prediction of Performance of a Student in an University using Machine Learning Techniques. Paper presented at the 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). DOI: https://doi.org/10.1109/ICESC48915.2020.9155557
Lee, T. K., Cho, J. H., Kwon, D. S., & Sohn, S. Y. J. E. S. w. A. (2019). Global stock market investment strategies based on financial network indicators using machine learning techniques. 117, 228-242. DOI: https://doi.org/10.1016/j.eswa.2018.09.005
Lin, Y., Guo, H., & Hu, J. (2013). An SVM-based approach for stock market trend prediction. Paper presented at the The 2013 international joint conference on neural networks (IJCNN). DOI: https://doi.org/10.1109/IJCNN.2013.6706743
Mittermayer, M.-A. (2004). Forecasting intraday stock price trends with text mining techniques. Paper presented at the 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the. DOI: https://doi.org/10.1109/HICSS.2004.1265201
Naeini, M. P., Taremian, H., & Hashemi, H. B. (2010). Stock market value prediction using neural networks. Paper presented at the 2010 international conference on computer information systems and industrial management applications (CISIM). DOI: https://doi.org/10.1109/CISIM.2010.5643675
Naik, R. L., Ramesh, D., Manjula, B., Govardhan, A. J. C. E., & Systems, I. (2012). Prediction of stock market index using genetic algorithm. 3(7), 162-171.
Parmar, I., Agarwal, N., Saxena, S., Arora, R., Gupta, S., Dhiman, H., & Chouhan, L. (2018). Stock market prediction using Machine Learning. Paper presented at the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). DOI: https://doi.org/10.1109/ICSCCC.2018.8703332
Qian, B., & Rasheed, K. J. A. I. (2007). Stock market prediction with multiple classifiers. 26(1), 25-33. DOI: https://doi.org/10.1007/s10489-006-0001-7
Raza, K. (2017). Prediction of Stock Market performance by using machine learning techniques. Paper presented at the 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT). DOI: https://doi.org/10.1109/ICIEECT.2017.7916583
Reddy, V. K. S. J. I. R. J. o. E., & Technology. (2018). Stock market prediction using machine learning. 5(10), 1033-1035.
Shah, V. H. J. F. o. M. L., & Spring. (2007). Machine learning techniques for stock prediction. 1(1), 6-12.
Sharma, A., Bhuriya, D., & Singh, U. (2017). Survey of stock market prediction using machine learning approach. Paper presented at the 2017 International conference of electronics, communication and aerospace technology (ICECA). DOI: https://doi.org/10.1109/ICECA.2017.8212715
Shen, S., Jiang, H., & Zhang, T. J. D. o. E. E., Stanford University, Stanford, CA. (2012). Stock market forecasting using machine learning algorithms. 1-5.
Sheta, A. (2006). Software effort estimation and stock market prediction using takagi-sugeno fuzzy models. Paper presented at the 2006 IEEE International Conference on Fuzzy Systems. DOI: https://doi.org/10.1109/FUZZY.2006.1681711
Usmani, M., Adil, S. H., Raza, K., & Ali, S. S. A. (2016). Stock market prediction using machine learning techniques. Paper presented at the 2016 3rd international conference on computer and information sciences (ICCOINS). DOI: https://doi.org/10.1109/ICCOINS.2016.7783235
Yoo, P. D., Kim, M. H., & Jan, T. (2005). Machine learning techniques and use of event information for stock market prediction: A survey and evaluation. Paper presented at the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). DOI: https://doi.org/10.1109/CIMCA.2005.1631572
Vadlamudi, S. (2015). Enabling Trustworthiness in Artificial Intelligence - A Detailed Discussion. Engineering International, 3(2), 105-114. https://doi.org/10.18034/ei.v3i2.519 DOI: https://doi.org/10.18034/ei.v3i2.519
Vadlamudi, S. (2016). What Impact does Internet of Things have on Project Management in Project based Firms?. Asian Business Review, 6(3), 179-186. https://doi.org/10.18034/abr.v6i3.520 DOI: https://doi.org/10.18034/abr.v6i3.520
--0--
Downloads
Published
Issue
Section
License
American Journal of Trade and Policy is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.