Neural Network Architectures for Real-Time Image and Video Processing Applications

Authors

  • Deekshith Narsina Senior Software Engineer, Capital One, 1600 Capital One Dr, Mclean, VA- 22102, USA
  • Nicholas Richardson Software Engineer, JPMorgan Chase, 10 S Dearborn St, Chicago, IL 60603, USA
  • Arjun Kamisetty Software Developer, Fannie Mae, 2000 Opportunity Wy, Reston, VA 20190, USA
  • Jaya Chandra Srikanth Gummadi Senior Software Engineer, Lowes Companies Inc., Charlotte, North Carolina, USA
  • Krishna Devarapu Senior Data Solutions Architect, Mission Cloud Services Inc., Beverley Hills, CA, USA

DOI:

https://doi.org/10.18034/ei.v10i2.735

Keywords:

Neural Networks, Real-Time Image Processing, Video Processing, Deep Learning, Convolutional Neural Networks (CNNs), Object Detection, Video Analytics

Abstract

This research optimizes neural network topologies for real-time image and video processing to achieve high-speed, accurate performance in dynamic contexts. The project aims to find efficient optimization methodologies, track neural network model progress, and highlight visual media applications. A secondary data review synthesizes peer-reviewed literature, technical reports, neural network design, and optimization advances. The research found that lightweight neural network architectures like MobileNet and Transformer-based Vision Transformers (ViTs) boost the computing economy without losing accuracy. Real-time applications need model pruning, quantization, knowledge distillation, and hardware-aware design. From real-time object identification in surveillance and autonomous driving to medical imaging and creative media creation, neural networks have transformed many applications. Despite these advances, balancing accuracy and economy, addressing hardware variability, and assuring ethical usage in face recognition remain issues. The report emphasizes the need for privacy-friendly and egalitarian AI rules. These results may help future research improve real-time visual processing systems and legislators control their responsible use in real-world applications.

Downloads

Download data is not yet available.

References

Abbas, Q., Ibrahim, M. E. A., Jaffar, M. A. (2018). Video Scene Analysis: An Overview and Challenges on Deep Learning Algorithms. Multimedia Tools and Applications, 77(16), 20415-20453. https://doi.org/10.1007/s11042-017-5438-7

Ahmad, A., Anisetti, M., Damiani, E., Jeon, G. (2019). Special Issue on Real-time Image and Video Processing in Mobile Embedded Systems. Journal of Real-Time Image Processing, 16(1), 1-4. https://doi.org/10.1007/s11554-018-0842-4

Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96

Botella, G., García, C. (2016). Real-time Motion Estimation for Image and Video Processing Applications. Journal of Real-Time Image Processing, 11(4), 625-631. https://doi.org/10.1007/s11554-014-0478-y

Carlsohn, M. F., Kehtarnavaz, N. (2010). First Issue of Journal of Real-Time Image Processing, volume 5. Journal of Real-Time Image Processing, 5(1), 1-2. https://doi.org/10.1007/s11554-010-0153-x

Carlsohn, M. F., Kehtarnavaz, N. (2018). Journal of Real-Time Image Processing: fourth issue of volume 15. Journal of Real-Time Image Processing, 15(4), 705-707. https://doi.org/10.1007/s11554-018-0839-z

Chen, C-H., Chang, H-W., Kuo, C-M. (2019). VLSI Implementation of Anisotropic Probabilistic Neural Network for Real-time Image Scaling. Journal of Real-Time Image Processing, 16(1), 71-80. https://doi.org/10.1007/s11554-018-0770-3

Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762

Devarapu, K. (2020). Blockchain-Driven AI Solutions for Medical Imaging and Diagnosis in Healthcare. Technology & Management Review, 5, 80-91. https://upright.pub/index.php/tmr/article/view/165

Devarapu, K. (2021). Advancing Deep Neural Networks: Optimization Techniques for Large-Scale Data Processing. NEXG AI Review of America, 2(1), 47-61.

Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160

Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770

Goda, D. R. (2020). Decentralized Financial Portfolio Management System Using Blockchain Technology. Asian Accounting and Auditing Advancement, 11(1), 87–100. https://4ajournal.com/article/view/87

Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157

Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769

Hassan, A., Ghafoor, M., Tariq, S. A., Zia, T., Ahmad, W. (2019). High Efficiency Video Coding (HEVC)–Based Surgical Telementoring System Using Shallow Convolutional Neural Network. Journal of Digital Imaging, 32(6), 1027-1043. https://doi.org/10.1007/s10278-019-00206-2

Kamisetty, A., Onteddu, A. R., Kundavaram, R. R., Gummadi, J. C. S., Kothapalli, S., Nizamuddin, M. (2021). Deep Learning for Fraud Detection in Bitcoin Transactions: An Artificial Intelligence-Based Strategy. NEXG AI Review of America, 2(1), 32-46.

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Khosla, D., Chen, Y., Kim, K. (2014). A Neuromorphic System for Video Object Recognition. Frontiers in Computational Neuroscience. https://doi.org/10.3389/fncom.2014.00147

Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123

Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162

Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97

Kothapalli, S. (2021). Blockchain Solutions for Data Privacy in HRM: Addressing Security Challenges. Journal of Fareast International University, 4(1), 17-25. https://jfiu.weebly.com/uploads/1/4/9/0/149099275/2021_3.pdf

Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672

Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98

Orts-Escolano, S., Garcia-Rodriguez, J., Morell, V., Cazorla, M., Azorin, J. (2014). Parallel Computational Intelligence-Based Multi-Camera Surveillance System. Journal of Sensor and Actuator Networks, 3(2), 95-112. https://doi.org/10.3390/jsan3020095

Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163

Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.

Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771

Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.

Tanibata, A., Schmid, A., Takamaeda-Yamazaki, S., Ikebe, M., Motomura, M. (2018). Protocomputing Architecture over a Digital Medium Aiming at Real-Time Video Processing. Complexity, 2018. https://doi.org/10.1155/2018/3618621

Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94

Uddin, M. A., Alam, A., Tu, N. A., Islam, M. S. (2019). SIAT: A Distributed Video Analytics Framework for Intelligent Video Surveillance. Symmetry, 11(7), 911. https://doi.org/10.3390/sym11070911

Downloads

Published

2022-12-31

Issue

Section

Peer Reviewed Articles

How to Cite

Narsina, D., Richardson, N., Kamisetty, A., Gummadi, J. C. S., & Devarapu, K. (2022). Neural Network Architectures for Real-Time Image and Video Processing Applications. Engineering International, 10(2), 131-144. https://doi.org/10.18034/ei.v10i2.735

Most read articles by the same author(s)