GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology
DOI:
https://doi.org/10.18034/ei.v11i1.718Keywords:
Generative Artificial Intelligence (GenAI), Precision Oncology, Breast Cancer, Cervical Cancer, Data Analytics, Cancer Screening, Predictive ModelingAbstract
This research examines how Generative Artificial Intelligence (GenAI) might improve cervical and breast cancer screening and monitoring data analytics to improve diagnosis accuracy and patient care in precision oncology. We evaluate literature and secondary data to show how GenAI technologies, including improved imaging analysis, genetic data integration, and predictive modeling, might improve early diagnosis and patient care. Significant results show that GenAI improves imaging analysis and genetic insights to personalize treatment approaches, enhancing diagnostic efficiency. However, model interpretability, data bias, and resource restrictions prevented broad deployment. The paper underlines the need for legislative frameworks that support explainable AI, safe data-sharing protocols, and inclusive datasets to guarantee different groups have fair access to GenAI applications. These issues must be addressed for GenAI to enhance cancer treatment, improve patient outcomes, and create a more equitable healthcare system. This study adds to the discussion on AI and oncology and highlights GenAI's potential to enhance precision cancer treatment.
Downloads
References
Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.
Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
Covvey, J. R., Kamal, K. M., Gorse, E. E., Mehta, Z., Dhumal, T. (2019). Barriers and Facilitators to Shared Decision-making in Oncology: A Systematic Review of the Literature. Supportive Care in Cancer, 27(5), 1613-1637. https://doi.org/10.1007/s00520-019-04675-7
Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Fan, Y., Mu, J., Huang, M., Imani, S., Wang, Y. (2019). Epigenetic Identification of ADCY4 as a Biomarker for Breast Cancer: An Integrated Analysis of Adenylate Cyclases. Epigenomics, 11(14), 1561–1579. https://doi.org/10.2217/epi-2019-0207
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772
Golembiewski, E., Allen, K. S., Blackmon, A. M., Hinrichs, R. J., Vest, J. R. (2019). Combining Nonclinical Determinants of Health and Clinical Data for Research and Evaluation: Rapid Review. JMIR Public Health and Surveillance, 5(4). https://doi.org/10.2196/12846
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
Lorgelly, P. K., Doble, B., Knott, R. J. (2016). Realising the Value of Linked Data to Health Economic Analyses of Cancer Care: A Case Study of Cancer 2015. PharmacoEconomics, 34(2), 139-154. https://doi.org/10.1007/s40273-015-0343-2
Lubelski, D., Alentado, V., Nowacki, A. S., Shriver, M., Abdullah, K. G. (2018). Preoperative Nomograms Predict Patient-Specific Cervical Spine Surgery Clinical and Quality of Life Outcomes. Neurosurgery, 83(1), 104-113. https://doi.org/10.1093/neuros/nyx343
Marton, T. (2012). Program and Abstracts from the 2011 Joint Annual Meeting of the American Association for Cancer Education, the European Association for Cancer Education and the Cancer Patient Education Network--Buffalo, New York, Sept 8-10, 2011. Journal of Cancer Education, suppl. Supplement, 27, 173-249. https://doi.org/10.1007/s13187-012-0381-9
Meng, Y., Sun, J., Qu, N., Zhang, G., Yu, T. (2019). Application of Radiomics for Personalized Treatment of Cancer Patients. Cancer Management and Research, 11, 10851-10858. https://doi.org/10.2147/CMAR.S232473
Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Shafqat, S., Abbasi, A., Khan, M. N. A., Qureshi, M. A., Amjad, T. (2018). Context Aware SmartHealth Cloud Platform for Medical Diagnostics. International Journal of Advanced Computer Science and Applications, 9(7). https://doi.org/10.14569/IJACSA.2018.090741
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771
Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Zarakovitis, D., Tsoromokos, D., Tsaloukidis, N., Lazakidou, A. (2018). Mobile Application for Patients' Waiting Time Control and Management of Diagnostic Imaging Examinations. International Journal of Reliable and Quality E – Healthcare, 7(4), 20-33. https://doi.org/10.4018/IJRQEH.2018100102
Zhang, W., Chien, J., Jeongsik, Y., Rui, K. (2017). Network-based Machine Learning and Graph Theory Algorithms for Precision Oncology. NPJ Precision Oncology, 1(1). https://doi.org/10.1038/s41698-017-0029-7
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Marcus Rodriguez; Kawsher Rahman; Krishna Devarapu; Narayana Reddy Bommu Sridharlakshmi; Pavan Kumar Gade; Abhishekar Reddy Allam
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Engineering International is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.