Enhancing DevOps with Azure Cloud Continuous Integration and Deployment Solutions
DOI:
https://doi.org/10.18034/ei.v7i2.721Keywords:
DevOps, Azure Cloud, Continuous Integration, Continuous Deployment, CI/CD Solutions, Cloud AutomationAbstract
This study addresses the critical gap in optimizing DevOps practices within Azure Cloud environments, focusing on continuous integration and deployment solutions. The primary objective is to explore advanced security practices, scalability through architectural patterns, and the integration of compliance and performance monitoring. Key findings indicate that leveraging Azure Security Center and Azure Sentinel significantly enhances data protection and regulatory compliance. Employing scalable architectures, such as microservices and serverless computing, optimizes resource usage and application performance. The integration of Azure Monitor, Log Analytics, and Application Insights ensures comprehensive monitoring, proactive issue detection, and adherence to compliance standards. These strategies collectively improve DevOps efficiency, resulting in faster and more reliable software delivery. Policy implications suggest that organizations should adopt Azure's advanced tools and practices to enhance security, scalability, and compliance in their DevOps processes, ultimately driving operational excellence and continuous improvement in cloud-based applications.
Downloads
References
Bharadi, V. A., & Meena, M. (2015). Novel architecture for CBIR SAAS on Azure cloud. The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings, 366-371. https://doi.org/10.1109/INFOP.2015.7489409 DOI: https://doi.org/10.1109/INFOP.2015.7489409
Bhardwaj, A., Singh, V. K., Vanraj, V., & Narayan, Y. (2015). Analyzing BigData with Hadoop cluster in HDInsight azure Cloud. The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings, 1-5. https://doi.org/10.1109/INDICON.2015.7443472 DOI: https://doi.org/10.1109/INDICON.2015.7443472
Chen, P., Lee, E., & Wang, L. (2013). A cloud-based synthetic seismogram generator implemented using Windows Azure. Earthquake Science, 26(5), 321-329. https://doi.org/10.1007/s11589-013-0038-8 DOI: https://doi.org/10.1007/s11589-013-0038-8
Costan, A., Tudoran, R., Antoniu, G., & Brasche, G. (2016). TomusBlobs: scalable data-intensive processing on Azure clouds. Concurrency and Computation: Practice & Experience, 28(4), 950-976. https://doi.org/10.1002/cpe.3034 DOI: https://doi.org/10.1002/cpe.3034
Hoske, M. T. (2014). Microsoft Azure cloud platform connects with Rockwell Automation as first industrial partner. Control Engineering, 61(7).
Kim, I., Jung, J., DeLuca, T. F., Nelson, T. H., & Wall, D. P. (2012). Cloud Computing for Comparative Genomics with Windows Azure Platform. Evolutionary Bioinformatics, 8, 527. DOI: https://doi.org/10.4137/EBO.S9946
Lu, S., Ranjan, R., & Strazdins, P. (2015). Reporting an experience on design and implementation of e-Health systems on Azure cloud. Concurrency and Computation: Practice & Experience, 27(10), 2602-2615. https://doi.org/10.1002/cpe.3325 DOI: https://doi.org/10.1002/cpe.3325
Mohammed, M. A., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Sachani, D. K., & Richardson, N. (2017a). Machine Learning-Based Real-Time Fraud Detection in Financial Transactions. Asian Accounting and Auditing Advancement, 8(1), 67–76. https://4ajournal.com/article/view/93
Mohammed, R., Addimulam, S., Mohammed, M. A., Karanam, R. K., Maddula, S. S., Pasam, P., & Natakam, V. M. (2017). Optimizing Web Performance: Front End Development Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142
Mrozek, D., Gosk, P., & Małysiak-Mrozek, B. (2015). Scaling Ab Initio Predictions of 3D Protein Structures in Microsoft Azure Cloud. Journal of Grid Computing, 13(4), 561-585. https://doi.org/10.1007/s10723-015-9353-8 DOI: https://doi.org/10.1007/s10723-015-9353-8
Persico, V., Marchetta, P., Botta, A., & Pescape, A. (2014). On Network Throughput Variability in Microsoft Azure Cloud. The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings., 1-6. https://doi.org/10.1109/GLOCOM.2014.7416997 DOI: https://doi.org/10.1109/GLOCOM.2014.7416997
Sachani, D. K., & Vennapusa, S. C. R. (2017). Destination Marketing Strategies: Promoting Southeast Asia as a Premier Tourism Hub. ABC Journal of Advanced Research, 6(2), 127-138. https://doi.org/10.18034/abcjar.v6i2.746 DOI: https://doi.org/10.18034/abcjar.v6i2.746
Shanahan, H. P., Owen, A. M., & Harrison, A. P. (2014). Bioinformatics on the Cloud Computing Platform Azure. PLoS One, 9(7). https://doi.org/10.1371/journal.pone.0102642 DOI: https://doi.org/10.1371/journal.pone.0102642
Ying, D., Kothapalli, K. R. V., Mohammed, M. A., Mohammed, R., & Pasam, P. (2018). Building Secure and Scalable Applications on Azure Cloud: Design Principles and Architectures. Technology & Management Review, 3, 63-76. https://upright.pub/index.php/tmr/article/view/149
Ying, D., Patel, B., & Dhameliya, N. (2017). Managing Digital Transformation: The Role of Artificial Intelligence and Reciprocal Symmetry in Business. ABC Research Alert, 5(3), 67–77. https://doi.org/10.18034/ra.v5i3.659 DOI: https://doi.org/10.18034/ra.v5i3.659
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Kanaka Rakesh Varma Kothapalli
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Engineering International is an Open Access journal. Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. We require authors to inform us of any instances of re-publication.