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ABSTRACT 

The main purpose of this paper is to investigate abundant exact traveling wave 
solutions (TWSs) of the (3+1)-dimensional Jimbo Miwa model utilizing the 
innovative auxiliary equation technique. By applying this powerful technique, the 
obtained solutions reveal and elucidate various types of waves, which are essential 
for comprehensive studies of complex phenomena such as ocean dynamics and 
other related scientific and engineering areas. The auxiliary equation method has 
proven successful in yielding new and analytical soliton solutions, including 
trigonometric functions, rational functions, hyperbolic functions, and exponential 
functions for the given model. The results of these solutions are represented using 
3-D, contour, and combined 2-D graphs, offering a more detailed and insightful 
visual interpretation. In particular, the velocity effect becomes more 
comprehensible when analyzing the 2-D plots. This paper also includes further 
phase plane analysis of the model to examine the solutions' behavior and 
characteristics. The results of this investigation have been compared with other 
researchers' findings available in the literature. This technique proves highly 
effective for various nonlinear models in generating innovative soliton solutions, 
which are essential in applied science and engineering. 

 

Key words: 
New auxiliary equation approach, (3+1)-dimensional Jimbo Miwa model, Exact Solution, 
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INTRODUCTION 

Nonlinear evolution equations explain different nonlinear characteristic phenomena in the 
natural and applied sciences, including fluid mechanics, quantum mechanics, optics, 
electromagnetism, plasma physics, biomathematics, shallow water waves, oceanography, 
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mathematical finance, and many others. Nonlinear evolution equations (NLEEs) have 
various types of solution structures and infinite-dimensional solution spaces, highlighting 
the challenges associated with determining analytical solutions due to the large dimensions 
of space variables and the nonlinearity of the differential equations. 

In scientific and engineering applications, discovering explicit traveling wave solutions 
(TWSs) to nonlinear models is crucial as it offers appreciated insights into the workings of 
the complex phenomena of these equations. The research used scientific techniques to 
provide reliable solutions for nonlinear equations. Several researchers have investigated 

NLEEs using different techniques including (
𝐺′

𝐺
)-expansion technique (Mirzazadeh et al., 

2014), 𝑡𝑎𝑛ℎ function method (Malfliet, 2004), rational function method (Zhang & Ma, 2014), 
𝑡𝑎𝑛ℎ − 𝑐𝑜𝑡ℎ technique (Wazwaz, 2007), 𝑠𝑖𝑛𝑒-Gordon expansion method (Baskonus et al., 
2019), direct algebraic method (Mirhosseini-Alizamini et al., 2020), modified, extended 
direct algebraic approach, Hirota bilinear direct technique (Al-Ramadhani, 2024), exp-
function method (Ma & Zhu, 2012; Ma et al., 2010), the new auxiliary equation approach 
(Khater et al., 2018), the planner dynamical system approach (Alshammari et al., 2024; 
Alaoui et al., 2024), Hirota bilinear method (Ma et al., 2012; Ma, 2022), unified method 
(Osman et al., 2018), Bäcklund transformation (Lü et al., 2015), modified homogeneous 
balance methods (Tuffour et al., 2024), Homotopy Perturbation method, Darbox 
transformation (Ma, 2005), and many more (Arshed et al., 2024; Alshammari et al., 2023; 
Roshid et al., 2020; Ur Rehman et al., 2024). Using the MAPLE and MATLAB computer 
software, complex computations can be performed. 

Many scholars have examined the following (3 + 1)-dimensional Jimbo-Miwa model 
(Wang & Bilige, 2020; Zhang et al., 2021): 

𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 + 2𝑢𝑦𝑡 − 3𝑢𝑥𝑧 = 0.                                                                    (1.1) 

The solution of the equation explains several interesting events in nonlinear physics. The 
absence of Painlevé features distinguishes it from the KP equation and originates from the 
KP hierarchy's second member (Yue et al., 2019). Despite lacking a Kac-Moody-Virasoro 
loop configuration in an algebra of symmetry of Eq. (1.1), it remains infinite-dimensional 
(Zhang & Chen, 2017). Mehdipoor & Neirameh (2015) used the sub-equation method and 
obtained trigonometric, hyperbolic, and rational functions for the (3 + 1)-dimensional JME. 
By employing the simplified Hirota’s technique, Wazwaz (2017) investigated numerous 
soliton solutions of various geometrical configurations for each expanded equation, 
including (3 + 1)-dimensional JMEs. Using the Hirota bilinear approach for the extended 
(3+1)-dimensional JME, Yue et al. (2019) attained four kinds of waves such as soliton, lumps, 
breathers, and rogue waves. Liu et al. (2020) have attained a type of periodic wave in the 
extended (3 + 1)-dimensional JME by utilizing bilinear form, Backlund transformation, and 
Lax pair, collectively referred to as the binary bell polynomial scheme. Also, the sech-
function approach is used to generate solitary waves. Zhang et al. (2017) utilized the long 
wave limit and the Hirota bilinear technique to the (3 + 1)-dimensional JME, explicitly 
focusing on their related interactions and rational and semi-rational solutions. Ma & Lee 
(2009) explored precise and unambiguous solutions to the (3 + 1)-dimensional JME using 
the logical function transformation technique. Wang et al. (2018) discovered lump wave and 
monster or abnormal wave solutions for the expanded (3 + 1)-dimensional JME by 
employing bilinear representation and symbolic computation. Zhang et al. (2021) applied 
the bilinear neural network approach and found dark, bright, and episodic wave solutions 
for the (3 + 1)-dimensional JME. 
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The new auxiliary equation (NAE) method is a relatively recent approach. It has been 
observed that the NAE technique is readily applicable to various nonlinear evolution 
equations (NLEEs), including coupled NLEEs. Moreover, it generates singular solutions 
involving hyperbolic and trigonometric functions and regular solutions. Due to these 
advantages, the NAE technique has gained considerable interest among researchers. A 
review of the literature indicates that the analytical solutions of the (3 + 1)-dimensional 
Jimbo-Miwa equation have not yet been developed using the NAE approach. 

This study examines the soliton solutions, which represent the solutions of a broad class of 
NLEEs describing a physical system modeled by the (3 + 1)-dimensional Jimbo-Miwa 
equation using the NAE approach. With the appropriateness and simplicity of this 
technique, we derive several realistic and generic solutions to the equation. By assigning 
specific values to arbitrary parameters, various wave solutions are obtained. These solitons 
are novel and have not been reported in the existing literature. Additionally, we present 
diagrams of the obtained solutions and discuss their physical significance. 

This manuscript is structured as follows. The unfamiliar auxiliary equation method is 
discussed first, followed by its applications. Phase plane analysis and their geometrical 
construction are then presented. The results are graphically illustrated, along with their 
physical interpretations. A comparison is provided with other results available in the 
literature, and finally, a conclusion is made.  

METHODOLOGY 

The nonlinear evolution equation is to be considered as the construction form: 

𝐻(𝑢, 𝑢𝑥 , 𝑢𝑧 , 𝑢𝑦, 𝑢𝑡 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦, 𝑢𝑥𝑧, 𝑢𝑥𝑡 , 𝑢𝑦𝑥 , 𝑢𝑦𝑦 , 𝑢𝑦𝑧 , 𝑢𝑦𝑡 , 𝑢𝑧𝑧, 𝑢𝑡𝑡 , … ) = 0.              (2.1) 

Here, 𝐻 indicates the nonlinear polynomial function covering the function of wave 
𝑢(𝑥, 𝑦, 𝑧, 𝑡), and the suffixes denote the partial derivatives concerning 𝑥, 𝑦, 𝑧, and 𝑡. Using an 
appropriate wave profile transformation: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 − 𝜔𝑡.                               (2.2) 

Making use of Eq.(2.2), from Eq. (2.1) we attained ODE as: 

𝑃(𝑢,  𝑢′, 𝑢′′, 𝑢′′′, … ) = 0.                                   (2.3) 

Here (′) =
𝑑

𝑑𝜉
, (′′) =

𝑑2

𝑑𝜉2, and (′′′) =
𝑑3

𝑑𝜉3. The homogeneous balancing rule, including 

nonlinear and derivative terms, was used to find the positive integer value. Corresponding 
to the declared technique, the exact solution 𝑖𝑠 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠: (2.3) 

𝑢(𝜉) = ∑ 𝑘𝑟𝑎𝑟𝑓(𝜉)𝑁
𝑟=0 .                                                                                                             (2.4) 

where 𝑘𝑟(𝑟 = 0, 1, 2, … , 𝑁) are nonzero constants, and 𝑓(𝜉) is the solution of first order 
auxiliary equation  

𝑓′(𝜉) =
1

𝑙𝑛(𝑎)
{𝑏𝑎−𝑓(𝜉) + 𝑐 + 𝑑𝑎𝑓(𝜉)}.                                 (2.5) 

We find the positive integer of 𝑟 by applying the homogeneous balancing rule between the 
nonlinear term and the maximum order derivative term. To generate a system of algebraic 
equations, we insert Eqs. (2.4) and (2.5) into Eq. (2.3), equating the coefficient of the power 

of 𝑎𝑟𝑓(𝜉), for 𝑟 = 0, 1, 2, 3 …. from both sides. We calculate the values of 𝑘𝑟(𝑟 =
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0, 1, 2,3 … ), 𝑝, 𝑞, 𝑟, 𝜔 and other variables to solve simultaneous equations. Depending on the 
values of 𝑏, 𝑐, and 𝑑, various cases arise in the solution of Eq. (2.5), which are stated below: 

Case 1: when 𝑐2 − 4𝑏𝑑 < 0 and 𝑑 ≠ 0, 

   𝑎𝑓(𝜉) =
−𝑐

2𝑑
+

√4𝑏𝑑−𝑐2

2𝑑
𝑡𝑎𝑛 (

√4𝑏𝑑−𝑐2

2
𝜉). 

or,  𝑎𝑓(𝜉) =
−𝑐

2𝑑
−

√4𝑏𝑑−𝑐2

2𝑑
𝑐𝑜𝑡 (

√4𝑏𝑑−𝑐2

2
𝜉). 

Case 2: when 𝑐2 − 4𝑏𝑑 > 0 and d≠ 0, 

   𝑎𝑓(𝜉) =
−𝑐

2𝑑
−

√4𝑏𝑑−𝑐2

2𝑑
tanh (

√4𝑏𝑑−𝑐2

2
𝜉). 

or,  𝑎𝑓(𝜉) =
−𝑐

2𝑑
−

√4𝑏𝑑−𝑐2

2𝑑
coth (

√4𝑏𝑑−𝑐2

2
𝜉). 

Case 3: when 𝑐2 + 4𝑏2 < 0, 𝑑 ≠ 0 and 𝑑 = −𝑏, 

   𝑎𝑓(𝜉) =
𝑐

2𝑏
−

√−𝑐2−4𝑏2

2𝑏
tan (

√−𝑐2−4𝑏2

2
𝜉). 

or,  𝑎𝑓(𝜉) =
𝑐

2𝑏
+

√−𝑐2−4𝑏2

2𝑏
cot (

√−𝑐2−4𝑏2

2
𝜉). 

Case 4: when 𝑐2 + 4𝑏2 > 0, 𝑑 ≠ 0 and 𝑑 = −𝑏, 

   𝑎𝑓(𝜉) =
𝑐

2𝑏
+

√𝑐2+4𝑏2

2𝑏
tanh (

√𝑐2+4𝑏2

2
𝜉). 

or,  𝑎𝑓(𝜉) =
𝑐

2𝑏
+

√𝑐2+4𝑏2

2𝑏
coth (

√𝑐2+4𝑏2

2
𝜉). 

Case 5: when 𝑐2 − 4𝑏2 < 0 and  𝑑 = 𝑏, 

   𝑎𝑓(𝜉) =
−𝑐

2𝑏
−

√−𝑐2+4𝑏2

2𝑏
tan (

√−𝑐2+4𝑏2

2
𝜉). 

or,  𝑎𝑓(𝜉) =
−𝑐

2𝑏
−

√−𝑐2+4𝑏2

2𝑏
cot (

√−𝑐2+4𝑏2

2
𝜉). 

Case 6: when 𝑐2 + 4𝑏2 > 0 and  𝑑 = 𝑏, 

   𝑎𝑓(𝜉) =
−𝑐

2𝑏
−

√𝑐2−4𝑏2

2𝑏
tanh (

√𝑐2−4𝑏2

2
𝜉). 

or,  𝑎𝑓(𝜉) =
−𝑐

2𝑏
−

√𝑐2−4𝑏2

2𝑏
coth (

√𝑐2−4𝑏2

2
𝜉). 

Case 7: when 𝑐2 = 4𝑏𝑑,   𝑎𝑓(𝜉) = −
2+𝑐𝜉

2𝑑𝜉
.  

Case 8: when 𝑏𝑑 < 0, 𝑐 = 0 and 𝑑 ≠ 0, 𝑎𝑓(𝜉) = −√−
𝑏

𝑑
tanh(√−𝑏𝑑𝜉). 

or,  𝑎𝑓(𝜉) = −√−
𝑏

𝑑
coth(√−𝑏𝑑𝜉). 

Case 9: when 𝑐 = 0 and 𝑏 = −𝑑,  𝑎𝑓(𝜉) =
1+𝑒(−2𝑑𝜉)

−1+𝑒(−2𝑑𝜉). 
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Case 10: when 𝑏 = 𝑑 = 0,   𝑎𝑓(𝜉) = cosh(𝑐𝜉) + sinh(𝑐𝜉). 

Case 11: when 𝑏 = 𝑐 = 𝑘 and d= 0,  𝑎𝑓(𝜉) = 𝑒𝑘𝜉 − 1. 

Case 12:  when 𝑐 = 𝑑 = 𝜓  and 𝑏 = 0, 𝑎𝑓(𝜉) =
𝑒𝜓𝜉

1−𝑒𝜓𝜉. 

Case 13: when 𝑐 = (𝑏 + 𝑑),   𝑎𝑓(𝜉) =
1−𝑏𝑒(𝑏−𝑑)𝜉

1−𝑑𝑒(𝑏−𝑑)𝜉
. 

Case 14: when 𝑐 = −(𝑏 + 𝑑),   𝑎𝑓(𝜉) =
𝑏−𝑒(𝑏−𝑑)𝜉

𝑑−𝑒(𝑏−𝑑)𝜉
. 

Case 15: when 𝑏 = 0,    𝑎𝑓(𝜉) =
𝑐𝑒𝑐𝜉

1−𝑑𝑒𝑐𝜉
. 

Case 16: when 𝑑 = 𝑐 = 𝑏 ≠ 0,  𝑎𝑓(𝜉) =
1

2
(√3 tan (

√3

2
𝑏𝜉) − 1). 

Case 17: when 𝑑 = 𝑐 = 0,   𝑎𝑓(𝜉) = 𝑏𝜉. 

Case 18: when 𝑏 = 𝑐 = 0,    𝑎𝑓(𝜉) =
−1

𝑑𝜉
. 

Case 19: when 𝑑 = 𝑏 and 𝑐 = 0,   𝑎𝑓(𝜉) = tan(𝑏𝜉). 

Case 20: when 𝑑 = 0,    𝑎𝑓(𝜉) = 𝑒𝑐𝜉 −
𝑘

𝜓
. 

Finally, the wave profile solutions from the Eq. (2.1) are obtained by replacing the values of 
𝑘𝑟(𝑟 = 0, 1, 2, … ), 𝑏, 𝑐, 𝑑 and 𝑓(𝜉) into Eq. (2.4). 

APPLICATION 

This part investigates standard and exact TWSs through the new auxiliary equation 
technique on the (3 + 1)-dimensional JME. We applied an appropriate wave profile 
transformation:  

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉) where 𝜉 = 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 − 𝜔𝑡.                                                (3.1) 

Setting Eq.(3.1) into Eq. (1.1), we obtained the ODE form 

𝑝3𝑞𝑢𝑖𝑣 + 6𝑝2𝑞𝑢′′𝑢′ − 2𝑞𝜔𝑢′′ − 3𝑝𝑟𝑢′′ = 0.                                           (3.2) 

After integrating and simplifying, we attained the form  

𝑝3𝑞𝑢′′′ + 3𝑝2𝑞(𝑢′)2 − 2𝑞𝜔𝑢′ − 3𝑝𝑟𝑢′ = 0.                                                                          (3.3) 

 We obtain the positive value of 𝑟 (= 2) using the homogeneous balancing rule between  𝑢′′′ 
and (𝑢′)2. The form of the trial solution for Eq.(3.3) is 

𝑢(𝜉) = 𝑘0 + 𝑘1𝑎𝑓(𝜉) + 𝑘2𝑎2𝑓(𝜉).                                                                                             (3.4) 

where 𝑘0, 𝑘1 and 𝑘2 are arbitrary constants such that 𝑘1 ≠ 0 and 𝑘2 ≠ 0 simultaneously and 
𝑓(𝜉) is the solution of the nonlinear Eq.(2.5). We insert Eq.(3.4) and Eq.(2.5) and Eq.(3.3), 

and then set the coefficient of  𝑎𝑓(𝜉) to zero, which produce simultaneous algebraic equations 
to obtain the outcomes:  

𝜔 = −
𝑝(4𝑝2𝑞𝑏𝑑−𝑝2𝑞𝑐2+3𝑟)

2𝑞
, 𝑘0 = 𝑘0, 𝑘1 = −2𝑝𝑑, 𝑘2 = 0. 

When 𝑐2 − 4𝑏𝑑 < 0 and 𝑑 ≠ 0, 
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𝑢1 = 𝑘0 − 2𝑝𝑑 (
−𝑐

2𝑑
+

√4𝑏𝑑−𝑐2

2𝑑
tan (

√4𝑏𝑑−𝑐2

2
𝜉)).                                         (3.5) 

or,    

𝑢2 = 𝑘0 − 2𝑝𝑑 (
−𝑐

2𝑑
−

√4𝑏𝑑−𝑐2

2𝑑
cot (

√4𝑏𝑑−𝑐2

2
𝜉)).                                                                     (3.6) 

When 𝑐2 − 4𝑏𝑑 > 0 and d≠ 0, 

𝑢3 = 𝑘0 − 2𝑝𝑑 (
−𝑐

2𝑑
−

√−4𝑏𝑑+𝑐2

2𝑑
tanh (

√−4𝑏𝑑+𝑐2

2
𝜉)).                                                              (3.7) 

or,   

𝑢4 = 𝑘0 − 2𝑝𝑑 (
−𝑐

2𝑑
−

√−4𝑏𝑑+𝑐2

2𝑑
coth (

√−4𝑏𝑑+𝑐2

2
𝜉)).                                                              (3.8) 

When 𝑐2 + 4𝑏2 < 0, 𝑑 ≠ 0 and 𝑑 = −𝑏, 

𝑢5 = 𝑘0 + 2𝑝𝑏 (
𝑐

2𝑏
−

√−4𝑏𝑑−𝑐2

2𝑏
tan (

√−4𝑏𝑑−𝑐2

2
𝜉)).                                                                  (3.9) 

or,   

𝑢6 = 𝑘0 + 2𝑝𝑏 (
𝑐

2𝑏
+

√−4𝑏𝑑−𝑐2

2𝑏
cot (

√−4𝑏𝑑−𝑐2

2
𝜉)).                                                                       (3.10) 

When 𝑐2 + 4𝑏2 > 0, 𝑑 ≠ 0 and 𝑑 = −𝑏, 

𝑢7 = 𝑘0 + 2𝑝𝑏 (
𝑐

2𝑏
+

√4𝑏2+𝑐2

2𝑏
tanh (

√4𝑏2+𝑐2

2
𝜉)).                                                                        (3.11) 

or,   

𝑢8 = 𝑘0 + 2𝑝𝑏 (
𝑐

2𝑏
+

√4𝑏2+𝑐2

2𝑏
coth (

√4𝑏2+𝑐2

2
𝜉)).                                                                        (3.12) 

When 𝑐2 − 4𝑏2 < 0 and  𝑑 = 𝑏, 

𝑢9 = 𝑘0 − 2𝑝𝑏 (−
𝑐

2𝑏
+

√4𝑏2−𝑐2

2𝑏
tan (

√4𝑏2−𝑐2

2
𝜉)).                                                                       (3.13) 

or   

𝑢10 = 𝑘0 − 2𝑝𝑏 (−
𝑐

2𝑏
−

√4𝑏2−𝑐2

2𝑏
cot (

√4𝑏2−𝑐2

2
𝜉)).                                                                     (3.14) 

When 𝑐2 + 4𝑏2 > 0 and  𝑑 = 𝑏, 

𝑢11 = 𝑘0 − 2𝑝𝑏 (−
𝑐

2𝑏
−

√−4𝑏2+𝑐2

2𝑏
tanh (

√−4𝑏2+𝑐2

2
𝜉)).                                                              (3.15) 

or   

𝑢12 = 𝑘0 − 2𝑝𝑏 (−
𝑐

2𝑏
−

√−4𝑏2+𝑐2

2𝑏
coth (

√−4𝑏2+𝑐2

2
𝜉)).                                                              (3.16) 

When 𝑐2 = 4𝑏𝑑,    

𝑢13 = 𝑘0 +
2𝑝(𝜉√𝑏𝑑+1)

𝜉
.                                                                                             (3.17) 

When 𝑏𝑑 < 0, 𝑐 = 0 and 𝑑 ≠ 0, 𝑢14 = 𝑘0 + 2𝑝𝑑√−
𝑏

𝑑
tanh(√−𝑏𝑑𝜉).                            (3.18) 

or,    
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𝑢15 = 𝑘0 + 2𝑝𝑑√−
𝑏

𝑑
coth(√−𝑏𝑑𝜉).                                                                                     (3.19) 

When 𝑐 = 0 and 𝑏 = −𝑑,   

𝑢16 = 𝑘0 −
2𝑝𝑑(1+𝑒(−2𝑑𝜉))

−1+𝑒(−2𝑑𝜉) .                                                                                                        (3.20) 

When 𝑐 = 𝑑 = 𝜓  and 𝑏 = 0,   

𝑢17 = 𝑘0 −
2𝑝𝜓𝑒𝜓𝜉

1−𝑒𝜓𝜉 .                                                                                      (3.21) 

When 𝑐 = (𝑏 + 𝑑),    

𝑢18 = 𝑘0 +
2𝑝𝑑(1−𝑏𝑒(𝑏−𝑑)𝜉)

1−𝑑𝑒(𝑏−𝑑)𝜉
.                                                                          (3.22) 

when 𝑐 = −(𝑏 + 𝑑)    

𝑢19 = 𝑘0 −
2𝑝𝑑(𝑏−𝑒(𝑏−𝑑)𝜉)

𝑑−𝑒(𝑏−𝑑)𝜉 .                                                           (3.23) 

When 𝑏 = 0,     

𝑢20 = 𝑘0 −
2𝑝𝑐𝑑𝑒𝑐𝜉

1−𝑑𝑒𝑐𝜉 .                                                                            (3.24) 

When 𝑑 = 𝑐 = 𝑏 ≠ 0,   

𝑢21 = 𝑘0 − 𝑝𝑏 (√3 tan (
√3

2
𝑏𝜉) − 1).                                                            (3.25) 

When 𝑏 = 𝑐 = 0,    

𝑢22 = 𝑘0 +
2𝑝

𝜉
.                                                                                                   (3.26) 

When 𝑑 = 𝑏 and 𝑐 = 0,   

𝑢23 = 𝑘0 − 2𝑏𝑝 tan(𝑏𝜉).                                                                                    (3.27) 

PHASE PLANE ANALYSIS 

Set 𝑢′ = 𝑣 then Eq. (3.3) becomes 

𝑝3𝑞𝑣′′ + 3𝑝2𝑞𝑣2 − 2𝑞𝜔𝑣 − 3𝑝𝑟𝑣 = 0.                                                                      (4.1) 

The model (4.1) can be expressed as follows in the form of a dynamical system 

𝑑𝑣

𝑑𝜉
= 𝑤 

𝑑𝑤

𝑑𝜉
= 𝐴𝑣 + 𝐵𝑣2                                                                                                                         (4.2) 

Here, 𝐴 =
2𝑞𝜔+3𝑝𝑟  

𝑝3𝑞
, 𝐵 = −

3

𝑝
. System (4.2) shown that two equilibrium points such that 

𝑂(0,0), 𝑃 (−
𝐴

𝐵
, 0), and the Hamiltonian form as follows: 

𝐻(𝑣, 𝑤) = 𝑤2 − 𝐴𝑉2 −
2

3
𝐵𝑣3.                                                                                                 (4.3)  

At the equilibrium point, the Jacobian matrices are determined as follows 
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Det 𝐽0 = −𝐴, det 𝐽𝑝 = 𝐴. 

The system has two equilibrium points, and it depends on 𝐴. 

(i) Case 1: if 𝐴 > 0, then 𝑂-saddle and 𝑃-center 

(ii)  Case 2: if 𝐴 < 0, then 𝑂-center and 𝑃-saddle 

 
Figure 1 Stream Flows with direction.  

Figure 2 Geometrical structure of the model (4.2) over the range −4 ≤ 𝑣, 𝑤 ≤ 4 we attain 
surface and contour plots. 

For the values, 𝐴 = 0.5, and 𝐵 = 0.5, Figure 1(A) streamlines represent 𝑂-saddle point and 
𝑃-center point. Conversely, Figure 1(B) streamlines show 𝑂-center point and 𝑃-saddle point. 
Next, we graphically illustrate the model (4.2) and also discuss the physical explanation. 
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Using the exact numerical values, we draw the surface plot and contour plot of the model 
(4.2) that we watch in Figure 2. We observed that the streamlines and surface plot gave the 
same results. 

RESULTS AND DISCUSSIONS 

In this part, we discuss the solutions attained by the research effort. This section also 
describes the real-life significance of the solitary waves and their physical importance. This 
section includes two sub-sections: The graphical representation is shown here. 

Graphical representation 

Figure 3 Anti-kink shape soliton 𝑢1(𝜉) for selected parameters over the range −12 ≤ 𝑥, 𝑡 ≤

12, (a) surface, (b) contour, and (c) combined 2D graphs for distinct values of 𝑡 

Figure 4 Kink shaped soliton 𝑢3(𝜉) for selected parameters within the range −12 ≤ 𝑥, 𝑡 ≤ 12 
(a) surface, (b) contour, and (c) combined 2D graphs for distinct values of 𝑡 

Figure 5 Anti-kink shape soliton 𝑢5(𝜉) within the range −12 ≤ 𝑥, 𝑡 ≤ 12 (a) surface, (b) 
contour, and (c) combined 2D graphs for distinct values of 𝑡 
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Figure 6 Dark bright or V-shaped soliton 𝑢7(𝜉) over the range −12 ≤ 𝑥, 𝑡 ≤ 12 (a) surface, (b) 
contour, and (c) combined 2D graphs for distinct values of 𝑡 
 

Figure 7 Anti-kink shape soliton 𝑢9(𝜉) over the range −12 ≤ 𝑥, 𝑡 ≤ 12 (a) surface, (b) contour, 
and (c) combined 2D graphs for distinct values of 𝑡 
 

Figure 8 Singular soliton 𝑢13(𝜉) over the range −12 ≤ 𝑥, 𝑡 ≤ 12 (a) surface, (b) contour, and (c) 
combined 2D graphs for distinct values of 𝑡 
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Figure 9 Kink shape soliton 𝑢14(𝜉) within the interval −12 ≤ 𝑥, 𝑡 ≤ 12 (a) surface, (b) contour, 
and (c) combined 2D graphs for distinct values of 𝑡 
 

Figure 10 Singular kink shape soliton 𝑢22(𝜉) over the range −12 ≤ 𝑥, 𝑡 ≤ 12 (a) surface, (b) 
contour, and (c) combined 2D graphs for distinct values of 𝑘0 
 

Figure 11 Singular bell-shaped soliton 𝑢22(𝜉) is portrayed for selected parameters over the 
range −12 ≤ 𝑥, 𝑡 ≤ 12 and we attain (a) surface, (b) contour, and (c) combined 2D graphs for 
distinct values of 𝑘0 
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Figure 12 Flat V-shaped soliton 𝑢23(𝜉) within the interval −12 ≤ 𝑥, 𝑡 ≤ 12 (a) surface, (b) 
contour, and (c) combined 2D graphs for distinct values of 𝑡 

 

Physical explanation 

Our main goal is to demonstrate how the free parameters influence the wave profiles in the 
wave function 𝑢(𝑥, 𝑦, 𝑧, 𝑡) solutions to the (3+1)-dimensional JME and describe each wave's 
steady propagation through 3D, contour, and combination 2D plots. The solution 𝑢1(𝜉) 
represents an anti-kink shape soliton for selecting free parametric values 𝑝 = 0.8, 𝑞 =
0.5, 𝑟 = −1, 𝑏 = 1, 𝑐 = 2.2, 𝑑 = 1, 𝑦 = 𝑧 = 𝑘0 = 0  is displayed in Figure 3(a) and associated 
contour in Figure 3(b) in order that. Figure 3(c) also illustrates the progression of the waves 
for distinct values of 𝑡 = 1,3,5. To increase the value of 𝑡, the graph moves horizontally 
forward. The modulus solution 𝑢3(𝜉) represents a shaped soliton for electing free 
parametric values 𝑝 = 0.15, 𝑞 = 2.1, 𝑟 = 0.1, 𝑏 = −1, 𝑐 = 3, 𝑑 = −1, 𝑦 = 𝑧 = 0, 𝑘0 = −1  is 
portrayed in Figure 4(a) and related contour in Figure 4(b) respectively. Figure 4(c) also 
shows the progression of the waves for different values of  𝑡 = 1,15,30. To increase the value 
of 𝑡, the graph moves forward in a positive direction. The solution 𝑢5(𝜉) layout anti-kink 
shape soliton for choosing free parametric values 𝑝 = 0.3, 𝑞 = −0.2, 𝑟 = −0.7, 𝑏 = 2, 𝑐 =
3, 𝑑 = −2, 𝑦 = 𝑧 = 𝑘0 = 1 is as seen in Figure 5(a) and involved contour in Figure 5(b). The 
progression of the waves for different values of  𝑡 = 1,9,17 is presented in Figure 5 (c). To 
increase the value of 𝑡, the diagram goes horizontally backward. The solution 𝑢7(𝜉) 
illustrated dark bright or V-shaped soliton for determining free parametric values 𝑝 =
0.04, 𝑞 = 1, 𝑟 = 0.2, 𝑏 = 5, 𝑐 = 1, 𝑑 = −5, 𝑦 = 𝑧 = 0, 𝑘0 = −1  is depicted in Figure 6(a) and 
similar contour in Figure 6(b) respectively. Figure 6(c) also depict the progression of the 
waves for different values of  𝑡 = 1,9,18. The graph moves in a negative 𝑥-axis direction for 
increasing the value of 𝑡. The solution 𝑢9(𝜉) portrayed anti-kink shape soliton for selecting 
free parametric values 𝑝 = 0.7, 𝑞 = 0.8, 𝑟 = −0.1, 𝑏 = 1, 𝑐 = 2.5, 𝑑 = 1, 𝑦 = 𝑧 = 0, 𝑘0 = 1 is 
portraited in Figure 7(a) and involved contour in Figure 7(b) correspondingly. Figure 7(c) 
also characterizes the progression of the waves for different values of  𝑡 = 1,5,9. The figure 
moves, simultaneously increasing the value of 𝑡 in the positive 𝑥-axis direction. The solution 
𝑢13(𝜉) depicted singular soliton for picking free parametric values 𝑝 = 0.7, 𝑞 = 0, 𝑟 =
0.1, 𝑏 = 1, 𝑐 = 2, 𝑑 = 1, 𝑦 = 𝑧 = 𝑘0 = 1 is demonstrated in Figure 8(a) and connected contour 
in Figure 8(b) in order that. Figure 8(c) illustrates the progression of the waves for different 
values of  𝑡 = 1,3,5. To increase the value of 𝑡, the graph moves horizontally backward. The 
solution 𝑢14(𝜉) illustrated kink shape soliton for selecting unrestricted parametric values 
𝑞 = 0.3, 𝑝 = 0.7, 𝑟 = 0.5, 𝑏 = 0.2, 𝑐 = 0, 𝑑 = −1, 𝑦 = 𝑧 = 𝑘0 = 0  is shown in Figure 9(a) and 
equivalent contour in Figure 9(b) respectively. Figure 9(c) also shows the progression of the 
waves for different values of  𝑡 = 1,11,25. The figure moves in a negative 𝑥-axis direction to 
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increase the value of 𝑡. The solution 𝑢22(𝜉) layout singular kink shape soliton for selecting 
free parametric values 𝑞 = 0.2, 𝑝 = 0.1, 𝑟 = 0.2, 𝑏 = 𝑐 = 0, 𝑑 = −1, 𝑦 = 𝑧 = 1, 𝑘0 = 0  is 
represented in Figure 10(a) and associated contour in Figure 10(b). Figure 10(c) also shows 
the progression of the waves for different values of  𝑡 = −2,0,2. To increase the value of 𝑡, 
the graph moves vertically upward. The modulus solution 𝑢22(𝜉) represents a singular bell-
shaped soliton for choosing free parametric values 𝑝 = 0.1, 𝑞 = 0.2, 𝑟 = 0, 𝑏 = 𝑐 = 0, 𝑑 =
−1, 𝑦 = 𝑧 = 1, 𝑘0 = 0  is shown in Figure 11(a) and associated contour in Figs. 11(b) in order 
that. Figure 11(c) also shows the progression of the waves for different values of 𝑡 =

−0.35,0,0.35. The diagram is going on vertically downward after increasing the value of 𝑡. 
The absolute solution 𝑢23(𝜉) depicted a flat V-shaped soliton for picking free parametric 
values 𝑝 = 0.01, 𝑞 = −0.1, 𝑟 = 0.2, 𝑏 = 1, 𝑐 = 0, 𝑑 = 1, 𝑦 = 𝑧 = 𝑘0 = 0 is displayed in Figure 
12(a) and similar contour in Figure 12(b). Figure 12(c) also shows the progression of the 
waves for different values of 𝑡 = 1,50,100. To increase the value of 𝑡, the graph moves 
horizontally forward.  

COMPARISON 

We compare our results with those of Ma & Lee (2009), who used the rational function 
technique to study the (3 + 1)-dimensional JME. Ma & Lee (2009) have found an exact 
solution to the stated equation by employing this method. Conversely, we applied the new 
auxiliary equation technique and generated abundant wave profile solutions for the (3 + 1)-
dimensional JME. Both methods have similar solutions but are not precisely the same as 
displayed in Table 1. We have other solutions in the form of rational, exponential, 
trigonometric, and hyperbolic structures. 

Table 1: Comparison between obtained solutions with rational function method solutions 
(Ma & Lee, 2009) 

Obtained solutions Ma & Lee (2009) solutions 

In Eq.(3.5) taking 𝑝 = 𝑞 = 𝑟 = 𝑏 = 𝑑 = 1,
𝑐 = 𝑘0 = 0 and 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻, then the 
solution becomes 

𝐻 = −2 tan (𝑥 + 𝑦 + 𝑧 +
7

2
𝑡) 

In Eq.(3.12) taking 𝑎 = 𝑏 = 𝑐 = 1, 𝑑 = 0 and 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻, then the solution becomes 

𝐻 = −2 tan (𝑥 + 𝑦 + 𝑧 +
7

2
𝑡) 

In Eq.(3.6) taking 𝑝 = 𝑞 = 𝑟 = 𝑏 = 𝑑 = 1,
𝑐 = 𝑘0 = 0 and 𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻, then the 
solution becomes 

𝐻 = 2 cot (𝑥 + 𝑦 + 𝑧 +
7

2
𝑡) 

In Eq.(3.13) taking 𝑎 = 𝑏 = 𝑐 = 1, 𝑑 = 0 and 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻, then the solution becomes 

𝐻 = 2 cot (𝑥 + 𝑦 + 𝑧 +
7

2
𝑡) 

In Eq.(3.26) taking 𝑝 = 𝑞 = 𝑟 = 𝑏 = 𝑑 = 1,
𝑐 = 2, 𝑘0 = 0 and 𝑢22(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻, then the 
solution becomes 

𝐻 =
2

𝑥 + 𝑦 + 𝑧 +
3

2
𝑡
 

In Eq.(3.14) taking 𝑎 = 𝑏 = 1, 𝑐 =
1

2
, 𝑑 = 0 and 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻, then the solution becomes 

𝐻 =
2

𝑥 + 𝑦 + 𝑧 +
3

2
𝑡
 

CONCLUSION 

We have successfully obtained the traveling wave solution of the (3 + 1)-dimensional JME 
by applying the new auxiliary equation technique. The traveling wave solutions produced 
under certain conditions can be written as rational, exponential, trigonometric, and 
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hyperbolic functions. However, the new auxiliary equation method provides several 
distinctive free parameter values, including kink, anti-kink, singular kink, dark-bright or V-
shape, flat V-shaped, singular soliton, and singular bell-shaped solutions. We have 
mentioned 3D, contour, and combined 2D graphs to clarify the acquired solutions. We will 
better understand the wave velocity effect by watching the combined 2D plot. Therefore, 
based on the analytical investigation and the numerical solutions, we can determine that 
our suggested approach provides a sequential mathematical tool for studying solutions or 
solitary wave solutions of the (3 + 1)-dimensional JME. However, we investigated the 
phase plane analysis of the model. Different conditions on the involved parameters are used 
to find all potential phase portraits. We observe that the NAE method is simple, potent, and 
straightforward for handling any nonlinear model that produces abundant analytically 
novel soliton solutions. Shortly, we will find variable coefficient solutions of the same model 
to obtain more dynamics. 

Funding Declaration: We do not have a research fund for this research work. 
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