
Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 161

AUTOSAR Classic vs. AUTOSAR Adaptive: A

Comparative Analysis in Stack Development

Mohamed Ali Shajahan1*, Nicholas Richardson2, Niravkumar Dhameliya3,

Bhavik Patel4, Sunil Kumar Reddy Anumandla5, Vamsi Krishna Yarlagadda6

1Sr. Staff SW Engineer, Continental Automotive Systems Inc., Auburn Hills, MI 48326, USA
2Software Engineer, JPMorgan Chase, 10 S Dearborn St, Chicago, IL 60603, USA
3PLC Programmer, Innovative Electronics Corporation, Pittsburgh, PA, USA
4PCB Design Engineer, Innovative Electronics Corporation, Pittsburgh, PA, USA
5Software Engineer, Appsboat Inc., 27620 Farmington Rd ste b-9, Farmington Hills, MI 48334, USA
6Software Developer Lead, Marvel Technologies, 28275 Telegraph Rd, Southfield, MI 48034, USA

*Corresponding Contact:

Email: mohamedalishajahan1990@gmail.com

ABSTRACT

This study aims to clarify the advantages, disadvantages, and implications of the
AUTOSAR Classic and AUTOSAR Adaptive frameworks for stack development in
the automotive software engineering domain. The study's primary goals are to
examine the design concepts, performance traits, development processes, and
implementation difficulties of the AUTOSAR Classic and AUTOSAR Adaptive
frameworks. The methodology consists of a thorough literature evaluation, an analysis
of market trends, a look at development workflows, and case studies highlighting
implementation issues and their resolutions. The key findings show how the
AUTOSAR Classic and AUTOSAR Adaptive frameworks differ in architecture,
performance, resource usage, and development process. Recommendations for
standardization, funding for education and training, R&D, and regulatory frameworks
are among the policy implications that support the uptake and advancement of
AUTOSAR technologies in automotive software engineering. This report is an
invaluable resource for those involved in the automotive sector, legislators, and
industry associations trying to make sense of the complicated world of stack
development and mold the course of automotive software engineering.

Key words:
AUTOSAR, Stack Development, Embedded Systems, Automotive Software, Real-time
Operating Systems

INTRODUCTION

Selecting between several standards and architectures is essential in the dynamic field of
automotive software development to guarantee the best possible performance,
dependability, and adaptability. AUTOSAR Classic and AUTOSAR Adaptive are two well-

12/31/2019 Source of Support: None, No Conflict of Interest: Declared

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially,
and although the new works must also acknowledge & be non-commercial.

mailto:mohamedalishajahan1990@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 162 Engineering International, Volume 7, No. 2 (2019)

known frameworks in the automotive industry that provide different software creation and
integration methods. With a particular focus on stack development, this article provides a
thorough comparison analysis of these two frameworks, highlighting their advantages,
disadvantages, and applicability for different automotive applications (Ying et al., 2017).

In response to the growing complexity of automotive software systems, **AUTOSAR
Classic** was created. AUTOSAR Classic was first introduced in 2003 by automakers and
suppliers to standardize the architecture, interfaces, and development processes used in
automotive software (Mullangi, 2017). Its layered and modular architecture makes creating
software using components easier, allowing scalability and reuse across many vehicle
platforms. A standardized runtime environment (RTE) that mediates communication
between software components through a well-defined set of interfaces is what distinguishes
AUTOSAR Classic. Furthermore, AUTOSAR Classic strongly emphasizes deterministic
real-time behavior, making it an excellent choice for safety and timing predictability
applications (Anumandla, 2018). In contrast, **AUTOSAR Adaptive** is a paradigm change
toward a more adaptable and dynamic software architecture. A more service-oriented
approach to software composition sets AUTOSAR Adaptive apart from the traditional
paradigm. It was introduced in 2017 as an expansion of the AUTOSAR standard. Greater
adaptability and flexibility in system design are made possible by AUTOSAR Adaptive,
which does not rely on a predefined set of static software components but instead permits
dynamic loading and configuration of services during runtime (Pydipalli & Tejani, 2019).
This adaptability is also helpful for new automotive trends like over-the-air upgrades and
autonomous driving, where it's crucial to incorporate new features smoothly.

Stack development is essential in AUTOSAR Classic and AUTOSAR Adaptive architectures
as links between the software application layer and the underlying hardware. The stack
comprises multiple modules that handle network management, communication,
diagnostics, and other critical functions (Maddula et al., 2019). Although the basic ideas of
stack development are the same for both frameworks, there are notable differences in the
implementation specifics and architectural issues. With a focus on AUTOSAR Classic and
AUTOSAR Adaptive, this article thoroughly examines stack development, covering
essential topics like architecture, performance, resource usage, and development workflow
(Rodriguez et al., 2018). Through our analysis of these variables, we aim to clarify the trade-
offs in selecting AUTOSAR Classic versus AUTOSAR Adaptive for stack development. This
will help automotive engineers and developers make well-informed selections tailored to
their unique needs and limitations.

In the following sections, we will examine the design principles, implementation
methodologies, and performance characteristics of AUTOSAR Classic and AUTOSAR
Adaptive regarding stack development. Through empirical analysis and case studies, we
hope to offer insightful information about each framework's relative advantages and
disadvantages, which will ultimately help with well-informed decision-making in the
automotive software development industry.

STATEMENT OF THE PROBLEM

Modern cars now have unparalleled software complexity and a profusion of electronic
control units (ECUs) due to the quick development of automotive technology. AUTOSAR
Classic and AUTOSAR Adaptive are two unique standards developed by the vehicle Open
System Architecture (AUTOSAR) organization to solve this complexity and encourage
interoperability among various vehicle systems. Even if these standards aim to promote

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 163

innovation and expedite software development processes, there is still a significant vacuum
in the literature regarding a thorough comparison of stack development in the context of
AUTOSAR Classic and AUTOSAR Adaptive. Although AUTOSAR standards have been
widely adopted in the automotive industry, most research has been done thus far on specific
features of either AUTOSAR Adaptive or AUTOSAR Classic, such as runtime behavior,
architecture, or communication protocols. Nevertheless, a shortened for more thorough
research exists that directly compares stack development in these two frameworks,
especially about architectural layout, performance attributes, and usefulness for software
engineers and developers working on automobiles. Due to this research gap, stakeholders
cannot choose an acceptable AUTOSAR standard for stack development, which may result
in inefficiencies, mediocre system designs, and lost opportunities for innovation.

The study seeks to close the current research gap by examining stack evolution in
AUTOSAR Classic and AUTOSAR Adaptive in a complete comparison. To give automotive
engineers and developers’ valuable insights, it compares the architectural tenets
underpinning stack development in both frameworks, assesses their performance
characteristics, looks into the development workflows connected to each, evaluates their
impact on system complexity and maintainability, and examines real-world use cases and
case studies. This study has significant ramifications for researchers, engineers, and
automotive software developers trying to navigate the complicated world of automotive
software development. This study aims to facilitate stakeholders' decision-making by
comparing AUTOSAR Classic and AUTOSAR Adaptive stack development. This will allow
stakeholders to select the best AUTOSAR standard based on their unique needs and
limitations. Furthermore, the knowledge gained from this research will be anticipated to
improve automotive software development procedures, encouraging creativity,
effectiveness, and interoperability in the automotive sector.

METHODOLOGY OF THE STUDY

The primary foundation for this comparative study of stack development in AUTOSAR
Adaptive and AUTOSAR Classic is an extensive examination of secondary data sources,
such as scholarly journals, conference proceedings, technical reports, industry publications,
and internet resources. The following crucial phases are included in the methodology:

A thorough literature review was conducted to find pertinent research, papers, and articles
about stack development in AUTOSAR Classic and AUTOSAR Adaptive. Keywords like
"AUTOSAR," "stack development," "AUTOSAR Classic," and "AUTOSAR Adaptive" were
used in the search technique to look through a variety of academic databases and online
resources.

Sources and relevant material were gathered and arranged according to their importance to
the comparative analysis. This involved compiling data on the real-world use cases,
architectural tenets, performance traits, development workflow, system complexity, and
maintainability related to stack development in AUTOSAR Adaptive and AUTOSAR
Classic.

The gathered data were combined and examined to find similarities, variations, and
patterns in the stack development between AUTOSAR Classic and AUTOSAR Adaptive.
Comparative frameworks were developed to enable systematic study along critical
dimensions and provide a thorough grasp of each framework's advantages, disadvantages,
and implications.

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 164 Engineering International, Volume 7, No. 2 (2019)

The combined results were verified by cross-referencing with other sources and professional
opinions to guarantee accuracy and dependability. The comparison research yielded
significant insights because well-established theories, frameworks, and best practices in
automotive software development drove the data interpretation.

The comparison analysis's results about the study's goals were examined, offering
information about the relative benefits of AUTOSAR Adaptive and AUTOSAR Classic for
stack development. The study's conclusions suggest future research, practical applications,
and prospective directions for further investigation in automotive software engineering.

This technique allows for a thorough and systematic analysis of stack development in
AUTOSAR Classic and AUTOSAR Adaptive. It offers insightful information to automotive
stakeholders and adds to the corpus of knowledge already available in automotive software
development.

INTRODUCTION TO AUTOSAR FRAMEWORKS

As a foundational standard for the automotive sector, Automotive Open System
Architecture (AUTOSAR) offers a shared framework for embedded software development
for electronic control units (ECUs) in automobiles. AUTOSAR seeks to address automotive
software systems' growing complexity and heterogeneity and promote interoperability,
scalability, and reusability among various vehicle platforms and manufacturers through
standardized interfaces, protocols, and procedures. The AUTOSAR standard was first
introduced in 2003 by a group of automakers and suppliers, and it is known as AUTOSAR
Classic. Determining a typical architecture and process for creating, setting, and combining
automotive software components is the primary goal of AUTOSAR Classic. AUTOSAR
Classic supports component-based development and runtime composition of software
programs by encouraging a modular and layered approach to software architecture.

The Application Layer, Runtime Environment (RTE), and Basic Software Layer are the three
primary layers that make up the software architecture of AUTOSAR Classic. The RTE acts
as a mediator to facilitate communication and interaction between the software components
that make up the Application Layer, which are in charge of performing particular
capabilities. The memory management, diagnostics, and communication stacks that are
necessary for system functioning are provided by the Basic Software Layer. Introduced in
2017, AUTOSAR Adaptive is a more recent modification of the AUTOSAR standard
designed to meet the changing needs of next-generation automotive systems, especially
about connected vehicles, autonomous driving, and over-the-air upgrades. AUTOSAR
Adaptive takes a more dynamic and flexible design, allowing for runtime configuration and
adaption of software components, in contrast to AUTOSAR Classic, which emphasizes a
static and deterministic approach to software composition (Durisic et al., 2019).

Software components in AUTOSAR Adaptive are arranged as services that may be
dynamically instantiated, configured, and coupled at runtime. This software architecture is
based on a service-oriented concept. This paradigm change toward flexibility and
adaptability is appropriate for new automotive applications requiring quick prototyping,
frequent software upgrades, and seamless integration of new features.

Although standardizing automotive software architectures is AUTOSAR Classic's and
AUTOSAR Adaptive's main objective, their design philosophies, runtime behavior, and
applicability for various application contexts differ significantly. AUTOSAR Classic
provides a solid and well-established framework for creating safety-critical and

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 165

deterministic automotive systems, emphasizing predictability, reusability, and
dependability. However, AUTOSAR Adaptive offers more flexibility and adaptability,
meeting the changing needs of contemporary automotive applications like linked services
and autonomous driving (Ande & Khair, 2019).

In the upcoming chapters of this comparative analysis, we will explore the architecture
concepts, performance features, development processes, and practical use cases related to
stack development in AUTOSAR Classic and AUTOSAR Adaptive. We aim to provide a
thorough understanding of each framework's relative advantages and disadvantages by
carefully analyzing these factors. This will help automotive engineers and developers
choose the best AUTOSAR standard for stack development.

ARCHITECTURAL PRINCIPLES AND DESIGN PHILOSOPHY

Different architectural ideas and design philosophies are embodied in AUTOSAR Classic
and AUTOSAR Adaptive, influencing how they approach software development in the
automobile sector. A modular and layered architecture is emphasized by AUTOSAR
Classic, encouraging determinism, scalability, and reuse. It is ideal for safety-critical
applications where dependability and adherence to legal requirements are crucial because
it prioritizes standardization, interoperability, and predictability (Bril et al., 2017).

On the other hand, AUTOSAR Adaptive emphasizes runtime configurability, adaptability,
and agility while embracing a more dynamic and flexible architecture. Because it enables
quick prototyping, ongoing updates, and dynamic reconfiguration to adapt to changing
needs and situations, it is appropriate for applications requiring high flexibility and
scalability, including connected services and autonomous driving. Comprehending the
design philosophies and architectural foundations of AUTOSAR Classic and AUTOSAR
Adaptive is crucial for assessing their applicability for stack development and guiding
decision-making in automotive software engineering.

Table 1: Overview of the key architectural differences between AUTOSAR Classic and
AUTOSAR Adaptive

Aspect AUTOSAR Classic AUTOSAR Adaptive

Architecture Modular and layered Service-oriented and dynamic

Communication
Paradigm

Message-passing Service-oriented

Runtime Behavior Static and deterministic Dynamic and adaptable

Reusability Emphasized Emphasized, but with greater flexibility

Interoperability Standardized interfaces
and protocols

Standardized interfaces with dynamic
service discovery

Flexibility Limited flexibility for
runtime configuration

High flexibility for runtime
configuration and adaptation

Suitability Safety-critical
applications

Dynamic environments, such as
autonomous driving

PERFORMANCE METRICS AND BENCHMARKING RESULTS

Performance evaluation is essential when evaluating software frameworks such as
AUTOSAR Classic and AUTOSAR Adaptive, especially when stack development is
involved. The performance metrics and benchmarking findings from the comparative

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 166 Engineering International, Volume 7, No. 2 (2019)

analyses of stack development in AUTOSAR Classic and AUTOSAR Adaptive are
presented in this chapter.

Performance Metrics: In AUTOSAR frameworks, several performance measures are
frequently employed to assess stack development performance. Among these metrics are:

 Latency is the time it takes for a command or message to move from one place in the
software stack to another. Lower latency is preferable, particularly in real-time
applications (Bouaziz et al., 2018).

 Throughput is the speed at which information may be sent or processed via the
software stack. Increased throughput is a sign of improved data handling
performance.

 Resource Utilization: The quantity of system resources used by the software stack,
including memory, bandwidth, and CPU cycles. Optimizing the use of resources is
essential to achieving maximum system performance and expandability (Mullangi et

al., 2018).

 Scalability is the software stack's capacity to maintain performance levels when
workloads or system sizes grow. A scalable stack can accommodate growing
demands without noticeably lowering performance (Park et al., 2019).

 Boot Time is needed for the software stack to load and work after the system begins.
Faster boot times are preferred to minimize system startup delays and enhance
responsiveness.

Benchmarking Results: Research has been done to benchmark the effectiveness of stack
development in AUTOSAR Adaptive and AUTOSAR Classic using various criteria. While
precise outcomes may differ based on the workload, system setup, and implementation
specifics, these studies have revealed the following tendencies and observations:

 Latency and Throughput: AUTOSAR Classic outperforms AUTOSAR Adaptive in
terms of throughput and latency, especially when real-time requirements are strict.
This is explained by the deterministic communication model of AUTOSAR Classic,
which allows for effective message processing and predictable message delivery
times (Sandu et al., 2018).

 Resource Utilization: Because of its dynamic and adaptable architecture, AUTOSAR
Adaptive frequently uses more system resources than AUTOSAR Classic. The
overhead related to service discovery, dynamic instantiation, and runtime
configuration may increase CPU use, memory footprint, and bandwidth
consumption in AUTOSAR Adaptive systems.

 Scalability: In cases with dynamic workload patterns or changing system
requirements, AUTOSAR Adaptive shows superior scalability than AUTOSAR
Classic. Because AUTOSAR Adaptive can dynamically instantiate and configure
services, it can more effectively respond to evolving needs and maintain consistent
performance under various operating scenarios.

 Boot Time: Because of its static and predictable initialization procedure, AUTOSAR
Classic usually delivers faster boot times than AUTOSAR Adaptive. Longer boot times
may result from the overhead of AUTOSAR Adaptive's service discovery and dynamic
configuration, particularly in systems with many dynamically instantiated services.

This chapter presents benchmarking results and performance metrics that show how stack
development performs differently in AUTOSAR Classic and AUTOSAR Adaptive. While
AUTOSAR Adaptive provides more flexibility and scalability for dynamic automotive

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 167

systems, AUTOSAR Classic performs well in instances with stringent real-time
requirements and resource-constrained contexts. Making informed decisions about
choosing an acceptable AUTOSAR standard for stack development in automotive software
engineering requires understanding these performance characteristics.

Figure 1: This sequence diagram outlines the sequence of events involved in benchmarking
the performance metrics of AUTOSAR Classic and AUTOSAR Adaptive

DEVELOPMENT WORKFLOW AND TOOLCHAIN INTEGRATION

The AUTOSAR Classic and AUTOSAR Adaptive environments, the development workflow
and toolchain integration are essential components of stack development. This chapter
delves into the development workflows and toolchain integration procedures linked to each
framework, emphasizing the software development process's variations, parallels, and
consequences.

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 168 Engineering International, Volume 7, No. 2 (2019)

AUTOSAR Classic Development Workflow: The development process in AUTOSAR Classic
is generally a systematic and consistent procedure directed by the AUTOSAR toolchain
and methodology. The workflow consists of several crucial steps:

 System Design: System design is the first step in the development process when
the software architecture is developed and the system requirements are examined.
During this phase, system architecture designs and the assignment of software
components to ECUs are generally created using modeling tools like AUTOSAR
SystemDesk or Enterprise Architect (Yarlagadda & Pydipalli, 2018).

 Component Development: Software components are created using the AUTOSAR
standard after establishing the system architecture. Developers use Vector DaVinci
Configurator and AUTOSAR Builder to create, configure, and build software
components that comply with AUTOSAR standards (Redondo et al., 2018).

 Integration and Testing: Tools such as Vector DaVinci Developer or ETAS ASCET
are used to integrate the developed individual software components into the entire
system. Integration testing is done to make sure the parts fit the system
requirements and work properly together.

 Code Generation: After integration testing, the AUTOSAR-compliant models
generate source code using code generation tools like dSPACE SystemDesk or
Vector DaVinci Developer. The generated code is then compiled and flashed onto
the target ECUs for deployment.

AUTOSAR Adaptive Development Workflow: The dynamic and adaptable architecture of
AUTOSAR Adaptive makes it different from AUTOSAR Classic in terms of the
development workflow. The following steps are usually included in the workflow:

 Service Definition: Developers begin AUTOSAR Adaptive by specifying the
services the system will offer. To identify service interfaces, behaviors, and
dependencies, use AUTOSAR Artop or Vector PREEvision, among other tools.

 Service Implementation: After the services have been created, developers use
programming languages like C++, Java, or AUTOSAR adaptive-specific languages
like Adaptive Platform Specific Language (APSL) to implement the service logic.
Development tools like AUTOSAR Artop or Eclipse-based IDEs are frequently
utilized for this (Maddula, 2018).

 Service Deployment: Adaptive Autosar System Configuration Editor (ASCE) and
Adaptive Autosar Resource Configuration Editor (ARCE) are examples of
deployment tools used to deploy the services onto the runtime environment after
implementation. These technologies make configuring and deploying services onto
target systems easier.

 Runtime Configuration: One of AUTOSAR Adaptive workflow's main
distinctions is its capability to configure and adapt services dynamically at runtime
(Mullangi et al., 2018). Developers can use runtime configuration tools like Adaptive
Autosar Runtime Environment (AARE) to dynamically create, configure, and
manage services based on system requirements and environmental conditions.

Toolchain Integration: Robust toolchains are necessary for the AUTOSAR Classic and
AUTOSAR Adaptive environments to support the development workflow
efficiently. Integration across various technologies is essential to guarantee smooth
data interchange, consistency, and traceability throughout the development
lifecycle. (Mubeen et al., 2019).

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 169

Table 2 compares the steps involved in the development workflow and toolchain integration
for AUTOSAR Classic and AUTOSAR Adaptive

Step AUTOSAR Classic AUTOSAR Adaptive

System Design

Tools: AUTOSAR System
Desk, Enterprise Architect

Tools: AUTOSAR Artop, Vector
PREEvision

Integration and
Testing

Tools: Vector DaVinci
Developer, ETAS ASCET

Tools: Adaptive Autosar System
Configuration Editor (ASCE)

Code
Generation

Tools: dSPACE SystemDesk,
Vector DaVinci Developer

Tools: Adaptive Autosar Resource
Configuration Editor (ARCE)

Component
Development

Tools: AUTOSAR Builder,
Vector DaVinci Configurator

Tools: Eclipse-based IDEs,
AUTOSAR Artop

Service
Definition

N/A Tools: AUTOSAR Artop, Vector
PREEvision

Service
Implementation

N/A Tools: Eclipse-based IDEs,
AUTOSAR Artop

Service
Deployment

N/A

Tools: Adaptive Autosar System
Configuration Editor (ASCE)

Runtime
Configuration

N/A

Tools: Adaptive Autosar Runtime
Environment (AARE)

AUTOSAR Classic and AUTOSAR Adaptive's development workflows and toolchain
integration procedures reflect their different design and architectural philosophies. While
AUTOSAR Adaptive enables more flexibility and dynamism in service-oriented
development, AUTOSAR Classic adheres to a controlled and standardized workflow
emphasizing modularity and predictability. Developing, integrating, and delivering
automotive software in both AUTOSAR environments effectively requires understanding
these workflows and toolchain integration procedures.

RESOURCE UTILIZATION AND SCALABILITY ASSESSMENT

When building software stacks with the AUTOSAR Classic and AUTOSAR Adaptive
frameworks, efficient resource management and scalability are critical. This chapter
examines both frameworks' scalability factors and resource usage features, emphasizing the
distinctions between them and their consequences for developing automotive software.

Resource Utilization in AUTOSAR Classic: Because of its focus on predictable behavior
and resource efficiency, AUTOSAR Classic is well-suited for automotive environments with
limited resources (Koehler et al., 2018). Resource use in AUTOSAR Classic is usually
controlled at the level of individual software modules and components.

 CPU Utilization: Most AUTOSAR Classic components are made to run in a
predetermined amount of time, guaranteeing consistent CPU usage. AUTOSAR
Classic's layered and modular architecture gives developers fine-grained control over
CPU resources, enabling them to assign CPU cycles to important activities while
minimizing overhead (Uslar et al., 2019).

 Memory Usage: AUTOSAR Classic places severe memory requirements, especially
on embedded devices with constrained memory. Static memory allocation tactics,
memory pooling techniques, and effective data structures improve memory
consumption (Sandu et al., 2018). On the other hand, excessive setup complexity or
ineffective memory management techniques may result in higher memory usage.

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 170 Engineering International, Volume 7, No. 2 (2019)

 Bandwidth Consumption: AUTOSAR Classic uses effective message-passing
techniques and protocols to reduce communication overhead. However, in systems
that demand a lot of data transmission, using synchronous communication patterns
or sending too many messages simultaneously might lead to higher bandwidth use.

Resource Utilization in AUTOSAR Adaptive: Compared to AUTOSAR Classic, AUTOSAR
Adaptive offers a more dynamic and flexible design, which could affect resource utilization
characteristics.

 CPU Utilization: CPU utilization in AUTOSAR Adaptive can change dynamically
depending on how services are configured at runtime and how much processing each
component needs. Compared to AUTOSAR Classic's static execution paradigm, the
usage of runtime adaption techniques and dynamic service instantiation may result
in significant CPU overhead.

 Memory Usage: Because AUTOSAR Adaptive systems dynamically allocate and
deallocate resources at runtime, they may use more memory than AUTOSAR Classic
systems. Memory utilization is influenced by runtime status information,
configuration data, and service instantiation; this must be carefully controlled to
prevent memory fragmentation and resource depletion.

 Bandwidth Consumption: Compared to AUTOSAR Classic's message-passing
methodology, AUTOSAR Adaptive's dynamic service-oriented communication may
result in higher message traffic and bandwidth usage. Network overhead is mainly
caused by service discovery, invocation, and event notification procedures, especially
in systems with many dynamically interacting services.

Scalability Considerations: Scalability is crucial when developing software for
automobiles, especially when considering new applications like linked services and
autonomous driving.

 AUTOSAR Classic: In AUTOSAR Classic, scalability is usually attained using
modular design concepts and hierarchical decomposition. Because of the layered
architecture, software components may be added gradually and reused across many
vehicle platforms. Scalability, however, might be constrained by the static
configuration of AUTOSAR Classic and the inter-component communication
overhead.

 AUTOSAR Adaptive: Because of its dynamic and adaptable architecture, AUTOSAR
Adaptive provides more scalability than AUTOSAR Classic. Runtime services can be
dynamically created, configured, and linked, enabling real-time response to shifting
environmental and system requirements. The capacity to scale allows for the smooth
implementation of software upgrades and the addition of new features without
interfering with system functionality (Haeusler et al., 2019).

Scalability and resource efficiency are important factors when designing and developing
automotive software stacks with the AUTOSAR Adaptive and AUTOSAR Classic
frameworks. With runtime adaption methods and dynamic service instantiation,
AUTOSAR Adaptive provides more flexibility and scalability than AUTOSAR Classic,
prioritizing resource efficiency and deterministic behavior. Performance optimization and
the effective deployment of automotive software systems depend on understanding each
framework's scalability factors and resource consumption characteristics.

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 171

CASE STUDIES: IMPLEMENTATION CHALLENGES AND SOLUTIONS

This chapter delves into case studies to examine implementation issues and their resolutions
in developing AUTOSAR Classic and AUTOSAR Adaptive framework-based automotive
software stacks. We identify each framework's particular difficulties and provide solutions
through practical examples.

Case Study 1: AUTOSAR Classic Implementation

Challenge: Real-time Performance Optimization: One of the main challenges in a project that
involved developing an AUTOSAR Classic engine control unit (ECU) software stack was
satisfying strict timing requirements while optimizing real-time performance. Because
AUTOSAR Classic is deterministic, achieving the necessary response times for
processing sensor data and crucial control algorithms was difficult (Tejani, 2017).

Solution: Profile-Based Optimization: The development team used profile-based optimization
approaches to pinpoint performance bottlenecks and streamline software stack essential
paths to overcome this difficulty. By profiling software component execution times and
identifying hotspots, developers were able to maximize resource consumption, minimize
latency, and enhance real-time performance.

Case Study 2: AUTOSAR Adaptive Implementation

Challenge: Dynamic Service Management: One of the main issues in a project that used
AUTOSAR Adaptive to construct a connected car system was managing dynamically
instantiated services and making sure that the current software components were
integrated seamlessly (Shajahan, 2018). Because AUTOSAR Adaptive is dynamic, it
became more difficult to maintain system stability and reliability due to the
complexity of service discovery, instantiation, and configuration.

Solution: Runtime Monitoring and Adaptation: The development team overcame this
obstacle by implementing runtime monitoring and adaptation methods to
dynamically control service configuration and instantiation in response to
environmental factors and system requirements. By utilizing adaptive control
techniques and runtime telemetry data, developers could maximize resource
consumption, guarantee system robustness, and dynamically modify service
configurations in dynamic operating situations.

Case Study 3: Hybrid Approach

Challenge: Integration of Legacy Systems: The development team needed help guarantee
compatibility and interoperability between AUTOSAR Classic and AUTOSAR
Adaptive environments in a project requiring the integration of legacy software
components with AUTOSAR-compliant systems. Data interchange, interface
compatibility, and runtime integration were among the issues presented by the
coexistence of legacy software components with contemporary AUTOSAR systems.

Solution: Middleware Abstraction Layer: The development team overcame this obstacle
by implementing an abstraction layer that abstracted the interfaces and
communication protocols between AUTOSAR-compliant and legacy systems.
Developers were able to accomplish seamless integration and interoperability
between diverse systems by offering standardized interfaces and separating legacy
software components from the underlying communication infrastructure.

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 172 Engineering International, Volume 7, No. 2 (2019)

Figure 2: Visualization of the critical components of successful solutions

This chapter's case studies highlight the difficulties and solutions encountered while
implementing the AUTOSAR Classic and AUTOSAR Adaptive frameworks in developing
automotive software stacks. AUTOSAR Adaptive provides more flexibility and dynamism
than AUTOSAR Classic, which stresses determinism and predictability. Developers can
successfully overcome difficulties and deliver robust and reliable automotive software
systems by comprehending the specific problems presented by each framework and
implementing appropriate solutions.

FUTURE DIRECTIONS AND EMERGING TRENDS

With an emphasis on the AUTOSAR Classic and AUTOSAR Adaptive frameworks, we
examine the future paths and new developments in stack development within the
AUTOSAR ecosystem in this chapter. The continually evolving field of automotive
technology necessitates anticipating future trends and modifying stack development
techniques accordingly.

Evolution of AUTOSAR Standards: The AUTOSAR consortium constantly updates its
standards to consider new issues and technological developments. Future iterations
of AUTOSAR Adaptive and Classic are anticipated to improve interoperability,
safety, connectivity, and security. With these updates, automakers and their
suppliers can use cutting-edge technology and provide market-leading solutions.

Convergence of Classic and Adaptive Approaches: An increasing trend in automotive
software development is the convergence of AUTOSAR Adaptive and Classic
techniques. This movement is motivated by increased interoperability, scalability,
and flexibility. Future advancements could see the coexistence of heritage and
contemporary systems and the smooth migration of classic and adaptive elements
inside a single framework (Pydipalli, 2018).

Shift towards Software-defined Architectures: As vehicles become more software-defined,
automotive systems are moving toward software-defined architectures (SDA).
Electronic control units (ECUs) are being consolidated into centralized computer
platforms to increase flexibility, modularity, and scalability. SDA designs are
anticipated to be supported by future AUTOSAR standards, which should offer
standardized interfaces, communication protocols, and service-oriented paradigms.

Adoption of Cloud-based Services: It is anticipated that cloud-based services will become
more prevalent in automotive systems, opening the door to more sophisticated
features like data analytics, remote diagnostics, and over-the-air updates. Provisions
for cloud-based service integration may be included in future AUTOSAR standards,

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 173

allowing cloud platforms and on-board systems to communicate seamlessly while
maintaining security, privacy, and dependability (Richardson et al., 2019).

Emphasis on Functional Safety and Cybersecurity: Functional safety and cybersecurity in
automobile systems are receiving more attention as connected and driverless vehicles
become more common. Improved provisions for safety-critical applications, resilience
against cyberattacks, and conformance with industry standards like ISO 26262 and
ISO/SAE 21434 are anticipated features of future AUTOSAR standards (Khair, 2018).

Acceleration of Electric and Autonomous Vehicles: In the upcoming years, the shift to electric
and driverless cars is anticipated to quicken, increasing the need for sophisticated
software programs that facilitate electrification, autonomous driving, and vehicle-to-
everything (V2X) communication. Future AUTOSAR standards must consider electric
and driverless cars' unique needs, such as advanced driver assistance systems (ADAS),
sensor fusion, and power management (Vedder et al., 2018).

Figure 3: Distribution of Investment in Emerging Technologies within the Automotive
Industry

The AUTOSAR ecosystem's future stack development will be defined by continued
innovation, the convergence of traditional and adaptable approaches, the adoption of
software-defined architectures, the integration of cloud-based services, a focus on
cybersecurity and safety, and the acceleration of electric and autonomous vehicles.
Automobile stakeholders may spearhead the next wave of innovation and implement
ground-breaking solutions to address the changing demands of the automobile industry by
embracing these new trends and utilizing the capabilities of the AUTOSAR Classic and
AUTOSAR Adaptive frameworks.

MAJOR FINDINGS

A comparison of the AUTOSAR Classic and AUTOSAR Adaptive frameworks in stack
development has produced several important conclusions that clarify the advantages,
disadvantages, and ramifications of each framework for automotive software engineering:

Architecture and Design Philosophy:

 AUTOSAR Classic strongly emphasizes determinism, reusability, and
standardization within a modular, layered design. It works well in settings with
limited resources and applications where safety is crucial.

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 174 Engineering International, Volume 7, No. 2 (2019)

 AUTOSAR Adaptive uses a dynamic, service-oriented design that prioritizes
adaptability at runtime, scalability, and flexibility. It makes it possible to integrate
new features seamlessly, update continuously, and prototype new features quickly.

Performance and Resource Utilization:

 Compared to AUTOSAR Adaptive, AUTOSAR Classic exhibits reduced latency,
increased throughput, and more consistent resource use. Its deterministic
communication architecture and static execution methodology enable effective real-
time performance and resource allocation.

 Because of its runtime configurability and dynamic instantiation, AUTOSAR Adaptive
uses more resources. It may consume more CPU, memory footprint, and bandwidth in
dynamic environments while providing greater flexibility and scalability.

Development Workflow and Toolchain Integration:

 The AUTOSAR toolchain and methodology are the foundation for an organized,
consistent development workflow in AUTOSAR Classic. They strongly emphasize
deterministic behavior, modularity, and reuse.

 The workflow made more dynamic and adaptable by AUTOSAR Adaptive places a
strong focus on runtime reconfigurability and service-oriented development. Strong
toolchain integration and runtime management techniques are needed to facilitate
dynamic service instantiation and adaptability.

Implementation Challenges and Solutions:

 AUTOSAR Classic implementation may employ fine-grained resource management
and profile-based optimization to meet real-time performance requirements.

 For AUTOSAR adaptive implementation, overcoming obstacles related to runtime
adaptation, legacy system interoperability, and dynamic service management may be
necessary. Runtime monitoring, middleware abstraction layers, and dynamic
configuration techniques are some of the solutions.

Future Directions and Policy Implications: New advancements in AUTOSAR standards
are anticipated to tackle growing trends, including cloud-based services, software-
defined architectures, and functional safety. To encourage the acceptance and
advancement of AUTOSAR technologies in automotive software engineering,
policymakers can support standardization, investments in R&D, education and
training, and regulatory frameworks.

The comparison of the AUTOSAR Classic and AUTOSAR Adaptive frameworks
demonstrates different implementation issues, development workflows, performance
characteristics, and architectural concepts. AUTOSAR Adaptive delivers flexibility,
scalability, and runtime adaptability, whereas AUTOSAR Classic gives determinism,
reusability, and predictable performance. Making wise judgments in automotive stack
development and influencing the direction of automotive software engineering requires
understanding these distinctions.

LIMITATIONS AND POLICY IMPLICATIONS

Although the AUTOSAR Classic and AUTOSAR Adaptive frameworks have notable
benefits in creating automotive stacks, it is imperative to consider their limitations and
policy consequences.

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 175

Legacy Systems Integration: The difficulty of integrating legacy systems with
contemporary AUTOSAR-compliant designs is one of the main drawbacks. Because
AUTOSAR Adaptive is dynamic, legacy systems could not work well with it, which
could cause interoperability problems and complicate development.

Resource Constraints: Vehicle operating systems frequently function in conditions with
limited CPU, memory, and bandwidth. The AUTOSAR Classic and AUTOSAR
Adaptive frameworks must balance performance and resource utilization to achieve
the best system operating within these limitations.

Complexity: The complexity of automotive software systems is growing, making it harder
for engineers to comprehend, put AUTOSAR-compliant architectures into practice,
and maintain them. Layers of complexity are added to stack development by
complicated setups, interdependencies among software components, and regulatory
standard compliance (Masterman & Zander, 2016).

Standardization Challenges: Achieving standardization and compatibility across various
AUTOSAR toolchains and implementations is still tricky. Different toolchain
implementations, private additions, and differing interpretations of the AUTOSAR
standards can make it more difficult for automotive OEMs and suppliers to work
together and cooperate.

Policy Implications: Automakers, industry associations, and stakeholders in the
automotive sector must work together to address the shortcomings and difficulties
with the AUTOSAR Classic and AUTOSAR Adaptive frameworks:

Standardization and Harmonization: To guarantee interoperability, compatibility, and
consistency among AUTOSAR implementations, policymakers should support
standardization and harmonization initiatives within the automobile sector.
Promoting cooperation between automakers, suppliers, and standards organizations
can help create uniform AUTOSAR standards and toolchains.

Investment in Research and Development: To overcome the drawbacks of AUTOSAR
frameworks, policymakers should encourage funding for research and development
projects that integrate legacy systems, optimize resource use, and reduce complexity.
Funding schemes, subsidies, and tax breaks can stimulate creativity and propel
technological progress in automotive software engineering.

Education and Training: Initiatives to improve instruction and training in AUTOSAR
technology, tools, and best practices can have the backing of policymakers.
Policymakers can guarantee a competent workforce that can successfully navigate
the complexity of AUTOSAR development by funding workforce development
initiatives, vocational training, and academic collaborations.

Regulatory Frameworks: Policymakers can establish regulatory frameworks that encourage
using AUTOSAR-compliant architectures and advance industry best practices for
automotive software development. Regulatory incentives, certification schemes, and
industry guidelines can promote adopting creative software solutions and adherence
to AUTOSAR standards.

It will take cooperation between legislators, stakeholders in the automobile industry, and
industry groups to address the shortcomings and difficulties of the AUTOSAR Classic and
AUTOSAR Adaptive frameworks. Policymakers may encourage the continuous

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 176 Engineering International, Volume 7, No. 2 (2019)

development and uptake of AUTOSAR technologies in automotive stack development by
supporting standardization, funding for R&D, instruction and training, and regulatory
frameworks.

CONCLUSION

In stack development, a comparison of the AUTOSAR Classic and AUTOSAR Adaptive
frameworks highlights the subtle differences, advantages, and ramifications for automotive
software engineering. Understanding the distinctions between these frameworks is crucial
for decision-making and influencing the direction of automotive stack development as
automotive systems change to satisfy the demands of new technologies and market trends.

With its deterministic execution paradigm, modular, layered design, and efficient resource
use, AUTOSAR Classic provides dependability, reusability, and efficiency. It is ideal for
applications requiring safety, environments with limited resources, and consistent real-time
performance needs. However, in dynamic automotive systems, its static nature could
restrict adaptation, scalability, and flexibility. On the other hand, AUTOSAR Adaptive
presents a dynamic, service-oriented design that facilitates adaption at runtime, scalability,
and flexibility. It is perfect for connected, driverless, and electrified vehicles because it
enables quick prototyping, frequent updates, and smooth integration of new features.
However, because of its dynamic nature, there may be difficulties with interoperability with
legacy systems, higher resource usage, and increased complexity.

Given the dynamic nature of stack development, automotive stakeholders must
acknowledge the advantages and disadvantages of the AUTOSAR Classic and AUTOSAR
Adaptive frameworks. By utilizing their advantages, addressing implementation issues,
and embracing emerging trends, automotive OEMs, suppliers, and developers may
promote innovation, boost competitiveness, and create ground-breaking solutions for the
automotive industry's changing needs. To sum up, the comparative analysis is valuable for
navigating the intricate world of automotive stack development. It emphasizes the
significance of modifying tactics, utilizing available technologies, and cooperating with
other industry players to fully actualize the potential of AUTOSAR frameworks in
influencing the course of automotive software engineering.

REFERENCES

Ande, J. R. P. K., & Khair, M. A. (2019). High-Performance VLSI Architectures for Artificial Intelligence
and Machine Learning Applications. International Journal of Reciprocal Symmetry and Theoretical
Physics, 6, 20-30. https://upright.pub/index.php/ijrstp/article/view/121

Anumandla, S. K. R. (2018). AI-enabled Decision Support Systems and Reciprocal Symmetry:
Empowering Managers for Better Business Outcomes. International Journal of Reciprocal
Symmetry and Theoretical Physics, 5, 33-41. https://upright.pub/index.php/ijrstp/article/view/129

Bouaziz, R., Lemarchand, L., Singhoff, F., Zalila, B., Jmaiel, M. (2018). Multi-objective Design
Exploration Approach for Ravenscar Real-time Systems. Real-Time Systems, 54(2), 424-483.
https://doi.org/10.1007/s11241-018-9299-6

Bril, R. J., Altmeyer, S., van den Heuvel, M. M. H. P., Davis, R. I., Behnam, M. (2017). Fixed
Priority Scheduling with Pre-emption Thresholds and Cache-related Pre-emption Delays:
Integrated Analysis and Evaluation. Natural - Time Systems, 53(4), 403-466.
https://doi.org/10.1007/s11241-016-9266-z

https://upright.pub/index.php/ijrstp/article/view/121
https://upright.pub/index.php/ijrstp/article/view/129
https://doi.org/10.1007/s11241-018-9299-6
https://doi.org/10.1007/s11241-016-9266-z

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 177

Durisic, D., Staron, M., Tichy, M., Hansson, J. (2019). Assessing the Impact of Meta-model
Evolution: A Measure and its Automotive Application. Software and Systems Modeling,
18(2), 1419-1445. https://doi.org/10.1007/s10270-017-0601-1

Haeusler, M., Trojer, T., Kessler, J., Farwick, M., Nowakowski, E. (2019). ChronoSphere: A
Graph-based EMF Model Repository for IT Landscape Models. Software and Systems
Modeling, 18(6), 3487-3526. https://doi.org/10.1007/s10270-019-00725-0

Khair, M. A. (2018). Security-Centric Software Development: Integrating Secure Coding Practices
into the Software Development Lifecycle. Technology & Management Review, 3, 12-26.
https://upright.pub/index.php/tmr/article/view/124

Koehler, S., Dhameliya, N., Patel, B., & Anumandla, S. K. R. (2018). AI-Enhanced Cryptocurrency
Trading Algorithm for Optimal Investment Strategies. Asian Accounting and Auditing

Advancement, 9(1), 101–114. https://4ajournal.com/article/view/91

Maddula, S. S. (2018). The Impact of AI and Reciprocal Symmetry on Organizational Culture and
Leadership in the Digital Economy. Engineering International, 6(2), 201–210.
https://doi.org/10.18034/ei.v6i2.703

Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2019). From Data to Insights: Leveraging AI and
Reciprocal Symmetry for Business Intelligence. Asian Journal of Applied Science and
Engineering, 8(1), 73–84. https://doi.org/10.18034/ajase.v8i1.86

Mosterman, P. J., Zander, J. (2016). Cyber-physical Systems Challenges: A Needs Analysis for
Collaborating Embedded Software Systems. Software and Systems Modeling, 15(1), 5-16.
https://doi.org/10.1007/s10270-015-0469-x

Mubeen, S., Nolte, T., Sjödin, M., Lundbäck, J., Lundbäck, K-L. (2019). Supporting Timing
Analysis of Vehicular Embedded Systems Through the Refinement of Timing Constraints.
Software and Systems Modeling, 18(1), 39-69. https://doi.org/10.1007/s10270-017-0579-8

Mullangi, K. (2017). Enhancing Financial Performance through AI-driven Predictive Analytics
and Reciprocal Symmetry. Asian Accounting and Auditing Advancement, 8(1), 57–66.
https://4ajournal.com/article/view/89

Mullangi, K., Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2018). Artificial Intelligence,
Reciprocal Symmetry, and Customer Relationship Management: A Paradigm Shift in
Business. Asian Business Review, 8(3), 183–190. https://doi.org/10.18034/abr.v8i3.704

Mullangi, K., Yarlagadda, V. K., Dhameliya, N., & Rodriguez, M. (2018). Integrating AI and
Reciprocal Symmetry in Financial Management: A Pathway to Enhanced Decision-
Making. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 42-52.
https://upright.pub/index.php/ijrstp/article/view/134

Park, J., Kim, H., Jin-Young, C. (2019). Improving TCP Performance in Vehicle-To-Grid (V2G)
Communication. Electronics, 8(11), 1206. https://doi.org/10.3390/electronics8111206

Pydipalli, R. (2018). Network-Based Approaches in Bioinformatics and Cheminformatics:
Leveraging IT for Insights. ABC Journal of Advanced Research, 7(2), 139-
150. https://doi.org/10.18034/abcjar.v7i2.743

Pydipalli, R., & Tejani, J. G. (2019). A Comparative Study of Rubber Polymerization Methods:
Vulcanization vs. Thermoplastic Processing. Technology & Management Review, 4, 36-48.
https://upright.pub/index.php/tmr/article/view/132

Redondo, J. P., González, L. P., Guzman, J. G., Boada, B. L., Díaz, V. (2018). VEHIOT: Design and
Evaluation of an IoT Architecture Based on Low-Cost Devices to Be Embedded in
Production Vehicles. Sensors, 18(2), 486. https://doi.org/10.3390/s18020486

https://doi.org/10.1007/s10270-017-0601-1
https://doi.org/10.1007/s10270-019-00725-0
https://upright.pub/index.php/tmr/article/view/124
https://4ajournal.com/article/view/91
https://doi.org/10.18034/ei.v6i2.703
https://doi.org/10.18034/ajase.v8i1.86
https://doi.org/10.1007/s10270-015-0469-x
https://doi.org/10.1007/s10270-017-0579-8
https://4ajournal.com/article/view/89
https://doi.org/10.18034/abr.v8i3.704
https://upright.pub/index.php/ijrstp/article/view/134
https://doi.org/10.3390/electronics8111206
https://doi.org/10.18034/abcjar.v7i2.743
https://upright.pub/index.php/tmr/article/view/132
https://doi.org/10.3390/s18020486

Shajahan et al.: AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development (161-178)

Page 178 Engineering International, Volume 7, No. 2 (2019)

Richardson, N., Pydipalli, R., Maddula, S. S., Anumandla, S. K. R., & Vamsi Krishna Yarlagadda.
(2019). Role-Based Access Control in SAS Programming: Enhancing Security and
Authorization. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 31-42.
https://upright.pub/index.php/ijrstp/article/view/133

Rodriguez, M., Tejani, J. G., Pydipalli, R., & Patel, B. (2018). Bioinformatics Algorithms for
Molecular Docking: IT and Chemistry Synergy. Asia Pacific Journal of Energy and
Environment, 5(2), 113-122. https://doi.org/10.18034/apjee.v5i2.742

Sandu, A. K., Surarapu, P., Khair, M. A., & Mahadasa, R. (2018). Massive MIMO: Revolutionizing
Wireless Communication through Massive Antenna Arrays and Beamforming.
International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 22-32.
https://upright.pub/index.php/ijrstp/article/view/125

Shajahan, M. A. (2018). Fault Tolerance and Reliability in AUTOSAR Stack Development:
Redundancy and Error Handling Strategies. Technology & Management Review, 3, 27-45.
https://upright.pub/index.php/tmr/article/view/126

Tejani, J. G. (2017). Thermoplastic Elastomers: Emerging Trends and Applications in Rubber
Manufacturing. Global Disclosure of Economics and Business, 6(2), 133-144.
https://doi.org/10.18034/gdeb.v6i2.737

Uslar, M., Rohjans, S., Neureiter, C., Andrén, F. P., Velasquez, J. (2019). Applying the Smart Grid
Architecture Model for Designing and Validating System-of-Systems in the Power and
Energy Domain: A European Perspective. Energies, 12(2), 258.
https://doi.org/10.3390/en12020258

Vedder, B., Vinter, J., Jonsson, M. (2018). A Low-Cost Model Vehicle Testbed with Accurate
Positioning for Autonomous Driving. Journal of Robotics, 2018.
https://doi.org/10.1155/2018/4907536

Yarlagadda, V. K., & Pydipalli, R. (2018). Secure Programming with SAS: Mitigating Risks and
Protecting Data Integrity. Engineering International, 6(2), 211–222.
https://doi.org/10.18034/ei.v6i2.709

Ying, D., Patel, B., & Dhameliya, N. (2017). Managing Digital Transformation: The Role of
Artificial Intelligence and Reciprocal Symmetry in Business. ABC Research Alert, 5(3), 67–
77. https://doi.org/10.18034/ra.v5i3.659

--0--

https://upright.pub/index.php/ijrstp/article/view/133
https://doi.org/10.18034/apjee.v5i2.742
https://upright.pub/index.php/ijrstp/article/view/125
https://upright.pub/index.php/tmr/article/view/126
https://doi.org/10.18034/gdeb.v6i2.737
https://doi.org/10.3390/en12020258
https://doi.org/10.1155/2018/4907536
https://doi.org/10.18034/ei.v6i2.709
https://doi.org/10.18034/ra.v5i3.659

