Engineering International, Volume B, No. 2 (2018) [SSN 2403-3629

Secure Programming with SAS: Mitigating
Risks and Protecting Data Integrity

Vamsi Krishna Yarlagadda'”, Rajani Pydipalli’

1Senior Systems Analyst, Starbucks Corporation, 2401 Utah Ave South, Seattle, WA 98134, USA
2Senior Team Lead, Cytel Statistical Software Solutions, India

Corresponding Contact:
Email: vklatestskills@gmail.com

ABSTRACT

This article examines the significance of safe programming with SAS (Statistical
Analysis System) for risk mitigation and data integrity protection in data-driven
environments. The study intends to investigate data protection strategies to
improve application security, look at best practices for secure SAS coding, and
identify prevalent security threats related to SAS applications. The review process
is secondary data, with insights gleaned from online resources, industry reports,
conference papers, and academic journals. Important discoveries show that SAS
programs frequently have vulnerabilities, including SQL injection, cross-site
scripting (XSS), and unsafe data handling. The best practices that have been
established encompass data encryption, secure access controls, output encoding,
parameterized queries, and input validation. The policy implications emphasize
the significance of legislative frameworks for data protection and encouraging
instruction in secure programming practices. This report emphasizes how
important it is for businesses to use SAS for secure programming to protect
sensitive data, abide by data protection laws, and defend against cyberattacks.

Key words:
SAS programming, Secure Coding, Cybersecurity, Software Vulnerabilities, Information
Protection

12/31/2018 Source of Support: None, No Conflict of Interest: Declared

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially,
and although the new works must also acknowledge & be non-commercial.

INTRODUCTION

Information security and integrity are critical issues in today's data-driven business
environment. Ensuring the protection of sensitive data within apps has become crucial due
to the exponential rise of data and the sophistication of cyber threats. This paper explores
the topic of secure programming with SAS (Statistical Analysis System), focusing on risk
reduction and data integrity protection techniques.

SAS is a popular platform for statistical modeling and data analytics that helps businesses
gain essential insights from their data. However, SAS's capability also comes with the
obligation to ensure that programs created on this platform are safe from harm and able to

Asian Business Consortium | £/ Page 2l

mailto:vklatestskills@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

Yarlagadda and Pydipalli: Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity (211-222)

withstand future attacks. Security events and data breaches can have serious consequences,
such as non-compliance with regulations, financial losses, and reputational damage
(Anumandla, 2018). As a result, it is crucial to incorporate robust security procedures within
the SAS application development lifecycle.

"Secure programming" refers to a collection of methods and strategies for finding and fixing
security holes in software systems. Secure development for SAS applications entails using
recommended practices to guard against typical attack vectors like SQL injection, cross-site
scripting (XSS), and unauthorized data access (Ying et al., 2017). By implementing safe
programming practices, developers can reduce the possibility of exploitation and improve
the general security posture of SAS applications.

Resolving codebase vulnerabilities is one of the main issues with SAS security
programming. Inadequately crafted or executed code may create vulnerabilities that
hackers can exploit to obtain unauthorized access or alter confidential information (Khair,
2018). To lessen the attack surface and improve application security, developers must follow
secure coding techniques such as input validation, parameterized queries, and appropriate
error handling. Data integrity and protection are crucial components of secure SAS
programming. SAS applications frequently handle large volumes of sensitive data, such as
financial records, private company information, and personal information. It is crucial to
guarantee the privacy, accuracy, and accessibility of this data. Data protection strategies,
including encryption, data masking, access controls, and secure data transport protocols,
prevent unwanted access or manipulation.

This article offers helpful advice and principles for secure SAS programming, emphasizing
risk reduction and data integrity protection. To enable developers and organizations to take
proactive security measures, this article will highlight frequent security difficulties and
vulnerabilities unique to SAS programming. Additionally, this article seeks to provide
readers with the information and resources needed to fortify the security of their SAS
applications by highlighting best practices and methodologies for safe SAS programming.

Organizations hoping to leverage data analytics while protecting themselves from possible
security risks must use SAS secure programming. Developers may fortify SAS applications
against changing cyber threats and safeguard essential data assets by adopting secure
coding techniques and robust data protection methods. This article is a comprehensive
resource for developers and security professionals looking to improve the security posture
of their SAS applications and guarantee data integrity.

STATEMENT OF THE PROBLEM

Several significant problems and gaps in SAS secure programming require targeted study
and valuable solutions. This section covers the problem statement, the research gap, the
study's aims, and the importance of tackling these concerns.

Although SAS is widely used for statistical modeling and data analytics, comprehensive
guidelines and resources must be explicitly designed for secure programming practices in
SAS environments. The extant literature frequently needs to provide developers and
organizations with clear instructions for adequately managing the specific vulnerabilities
and dangers of SAS programming (Tejani, 2017). Additionally, even though secure coding
guidelines are well-documented, more research is needed to determine how to apply and
modify them for SAS programming contexts.

Page 212 Engineering International, Volume B, No. Z (2018)

Engineering International, Volume B, No. 2 (2018) [SSN 2403-3629

This study aims to thoroughly understand the security issues related to SAS programming
and suggest workable solutions for reducing these risks to safeguard data integrity. The
study's specific objectives are to identify common security vulnerabilities and risks related
to SAS programming; research best practices and techniques for incorporating secure
programming principles into SAS applications; investigate ways to guarantee data
availability, confidentiality, and integrity in SAS environments; and create
recommendations and guidelines specifically for SAS developers and security practitioners
to improve the security posture of SAS applications and lessen the threat of emerging
cyberattacks.

Solving the issues this study highlights will significantly impact the data security space and
programming techniques in SAS environments. Through this study, we aim to close the
knowledge gap on secure programming with SAS, enabling developers and companies to
secure their SAS applications better and safeguard essential data assets. The results of this
research will enhance the overall resilience of SAS applications against cyber threats by
helping to establish standardized best practices for secure SAS programming.

Moreover, the importance of this research goes beyond specific companies to include wider
ramifications for data privacy and legal compliance. Implementing secure programming
practices within SAS environments is crucial for guaranteeing compliance with data
protection regulations and protecting against potential legal and financial consequences
associated with data breaches, especially in light of the growing regulatory scrutiny
surrounding data protection and privacy.

The primary objective of this research is to close essential gaps in the literature and practice
around secure programming with SAS. The project will also improve data security, reduce
risks, and safeguard data integrity in SAS environments. This study aims to contribute to
the ongoing discussion on secure programming techniques and cybersecurity in data
analytics and statistical modeling by offering valuable insights and suggestions specific to
SAS developers and practitioners.

METHODOLOGY OF THE STUDY

This study's methodology thoroughly analyzes and synthesizes all available secondary data
sources on SAS secure programming. Academic journals, conference proceedings, books,
industry reports, and reliable internet sources are all included in this evaluation. The study's
main objectives are to gather pertinent data about typical security flaws and hazards unique
to SAS programming, secure coding best practices for SAS environments, data protection
strategies that apply to SAS applications, and suggestions for improving security measures.
This secondary data synthesis aims to give SAS developers and security professionals’
valuable insights and advice on reducing risks and safeguarding data integrity in SAS
applications.

SECURE PROGRAMMING WITH SAS

SAS (Statistical Analysis System) is a commonly used platform in data analytics and
statistical modeling that enables firms to extract valuable insights from their data. However,
maintaining the security and integrity of data handled and stored within SAS applications
is a crucial obligation that goes hand in hand with the advantages of using SAS (Sandu et
al., 2018). This chapter introduces the idea of secure programming with SAS, emphasizing

Asian Business Consortium | £/ Page 213

Yarlagadda and Pydipalli: Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity (211-222)

the significance of risk mitigation and data integrity protection in the current digital
environment.

The Need for Secure Programming: Secure programming techniques are essential as
businesses depend increasingly on SAS for data-driven decision-making. The risks
associated with data breaches and cyber threats are substantial and include loss of
money, harm to one's reputation, and failure to comply with regulations. Secure
programming involves implementing approaches and strategies to find and fix SAS
programs' weaknesses to strengthen their defenses against possible intrusions.

Understanding Security Risks in SAS: Numerous security concerns and vulnerabilities can
affect SAS applications. Common dangers include SQL injection, cross-site scripting
(XSS), improper data handling, and insufficient access constraints. Malicious actors
may use these vulnerabilities to access confidential information without
authorization or interfere with the operation of SAS applications. It is crucial to
comprehend these hazards to execute efficacious security protocols (Vorakulpipat et
al., 2017).

Challenges in Secure Programming with SAS: Several obstacles prevent the
implementation of secure programming techniques in SAS systems. Developers may
need to know some SAS-related flaws and safe coding practices (Mullangi, 2017).
Additionally, a thorough grasp of general cybersecurity principles and SAS
functionality is necessary to integrate security measures into the development
lifecycle of SAS applications. To overcome these obstacles, SAS developers need
specific instructions and valuable suggestions.

Scope of This Study: The primary goal of this study is to offer helpful advice and insights
for secure SAS programming by utilizing current research and industry standards.
The scope includes a review of security threats unique to SAS applications,
recommendations for safe coding in SAS environments, and methods for preserving
data confidentiality and integrity. By examining these elements, this study aims to
promote secure programming methods for SAS developers and businesses using SAS
for data analytics (Abdulhamid et al., 2016).

Objectives of Secure Programming with SAS: Risk mitigation and data integrity protection
are the main goals of safe programming with SAS throughout the lifecycle of SAS
applications. This includes:

¢ Recognizing and comprehending the typical security flaws in SAS
programming.

¢ Creating and implementing recommended practices for designing secure SAS
code, such as parameterized queries, appropriate error handling, and input
validation.

. Ensure that data is protected via secure data transmission methods, data
masking, encryption, and access controls.

. Providing security professionals and SAS developers with the information and
resources they need to improve the security posture of SAS applications and
successfully counter new online threats.

SAS secure programming is crucial for data protection and risk reduction in data-driven
settings. This introductory chapter equips readers with the information and techniques

Page 214 Engineering International, Volume B, No. Z (2018)

Engineering International, Volume B, No. 2 (2018) [SSN 2403-3629

required to improve the security posture of their SAS programs. It lays the groundwork for
a deeper investigation into security issues and best practices related to SAS programming.

COMMON SECURITY RISKS IN SAS APPLICATIONS

Applications for the SAS (Statistical Analysis System) are widely used in various industries
for statistical modeling and data analysis. Like any other software system, SAS applications
are vulnerable to multiple security risks and vulnerabilities, jeopardizing data integrity and
exposing companies to dangers. To protect the integrity of SAS applications and implement
effective mitigation techniques, it is imperative to have a thorough understanding of these
typical security concerns.

SQOL Injection: SQL injection is one of the most common security flaws in SAS applications.
This vulnerability arises when an attacker uses faulty input validation in SQL queries
to run unauthorized commands. If not appropriately mitigated, SQL injection can
result in data breaches, data manipulation, and unauthorized access to sensitive
information kept in SAS databases (Lu et al., 2018).

Cross-Site Scripting (XSS): Another severe security flaw that concerns web-based SAS
applications is Cross-Site Scripting (XSS). When malicious scripts are inserted into
websites others view, this is an XSS attack. Attackers may be able to take advantage
of this to change website content, steal session cookies, or send users to dangerous
websites (Shajahan, 2018). Proper input sanitization and output encoding are
essential to avoiding XSS vulnerabilities in SAS online applications.

Insecure Data Handling: SAS applications' data integrity is seriously in danger from
careless data handling procedures. These procedures involve using ineffective data
transmission protocols, storing sensitive data in unencrypted format, and requiring
more access restrictions. Inadequate data security may lead to data disclosure to
unauthorized parties, data leaks, or unauthorized data alterations.

Lack of Input Validation: One frequent security hazard that can result in several
vulnerabilities in SAS applications is inadequate input validation. Attackers may be
able to leverage input fields to execute malicious instructions or insert harmful code
if user input is not correctly validated. Strict input validation procedures must be
implemented to stop threats like SQL injection and XSS (Bilal et al., 2018).

Inadequate Access Controls: Insufficient access restrictions in SAS applications may allow
unauthorized users to access confidential information or features. Access control
vulnerabilities can be caused by faulty authorization checks, weak authentication
procedures, and incorrectly defined permissions. Robust access control measures,
such as multi-factor authentication and the principle of least privilege, are essential
to reduce these dangers.

Poor Error Handling: Inadequate error handling procedures may unintentionally provide
hackers access to private data or system configurations. Attackers can create more
focused attacks using detailed error messages that disclose database structures or
system specifications. To mitigate the potential consequences of security breaches, it
is imperative to incorporate safe error-handling procedures that minimize the
exposure of system information.

Asian Business Consortium | £/ Page 210

Yarlagadda and Pydipalli: Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity (211-222)

Mitigation Strategies: To mitigate the common security threats associated with SAS
applications, developers and organizations should take proactive measures:

e To stop SQL injection attacks, use prepared statements and parameterized
queries.

° To reduce XSS vulnerabilities, validate and sanitize all user input.

e Use robust encryption techniques to encrypt sensitive data in transit and at rest.

e Create strong access controls using appropriate permission and authentication
procedures.

e Implement secure coding techniques, such as secure error handling, output
encoding, and input validation.

e Update and patch SAS software frequently to take advantage of security
updates and known vulnerabilities.

Client WebServer AppServer DBServer

Sends HTTP request with malicious payload

Forwards request to application

Constructs SQL query using unsanitized input

Executes SQL query and returns data

Receives SQL query result

Vulnerability exploited:
- Lack of input validation

- Unsafely constructing SQL query

Client WebServer AppServer DBServer

Figure 1: Depicting interactions between components during a SQL injection attack

By being aware of and taking action against these common security issues, organizations
can improve the security posture of their SAS applications and guard against potential data
breaches and cyber threats. In today's data-driven contexts, incorporating security best
practices into the SAS application development lifecycle is crucial to reducing risks and
preserving data integrity.

BEST PRACTICES FOR SECURE SAS CODING

Secure coding standards must be implemented to reduce risks and safeguard data integrity
in SAS (Statistical Analysis System) applications. Methods and approaches that limit
vulnerabilities and lessen the likelihood of hostile actors exploiting them are necessary for
secure SAS coding. This chapter examines the primary best practices for creating secure SAS
code to improve the overall security posture of SAS applications.

Input Validation: Appropriate input validation is the cornerstone of safe SAS coding.
Validate all user inputs to verify they follow the anticipated formats and ranges. Use
input sanitization strategies to stop injection threats like cross-site scripting (XSS) and
SQL injection. Validate and sanitize inputs at entry to minimize potential security
vulnerabilities (Wenge et al., 2014).

Page 216 Engineering International, Volume B, No. Z (2018)

Engineering International, Volume B, No. 2 (2018) [SSN 2403-3629

Parameterized Queries: When using prepared statements and parameterized queries in
SAS applications, connect with databases. Parameterization helps stop SQL injection
attacks by separating data from SQL commands. Developers can improve the eloper's
security by fixing parameterized queries, guaranteeing that user inputs are handled
as data rather than executable SQL commands.

Output Encoding: Using output encoding techniques to reduce the risk of cross-site
scripting (XSS) attacks in web-based SAS applications. User-generated material and
dynamically generated HTML should be encoded to stop malicious scripts from
running while other users' sessions are open. Ensuring the integrity of web
application content and preventing cross-site scripting attacks are two benefits of
proper output encoding.

Authentication and Authorization: Control SAS applications and data access by
implementing strong authentication and permission procedures. To verify user
identities securely, utilize multi-factor authentication (MFA) or other robust
authentication techniques. Enforce the proper authorization checks to ensure users
can access certain features and data in SAS applications. Error Handling: Use secure
error handling procedures to reduce the amount of information disclosed in SAS
applications. Refrain from revealing comprehensive error messages that expose
private system or database configurations. Instead, give consumers general error
messages and securely log specific error data for troubleshooting (Mullangi et al.,
2018).

Data Encryption: Encrypt sensitive data in transit and at rest to safeguard security within
SAS applications. Use robust encryption techniques when encrypting data from files
or databases. Encrypt data between SAS clients and servers using secure
communication protocols like TLS (Transport Layer Security) to prevent unwanted
interception or alteration.

Secure Configuration: Ensure SAS environments are configured securely by adhering to
vendor-recommended security rules and best practices. To reduce known risks, turn
off superfluous services, activate logging and monitoring features, and update and
patch security software often (Patel et al., 2011).

Continuous Security Testing: Conduct routine security testing and code reviews to find
and fix security flaws in SAS applications. Perform penetration testing, dynamic
application scanning, and static code analysis to find potential flaws and security
holes. Security testing should be included in the software development lifecycle for
continuous security compliance.

Using secure SAS coding best practices is crucial to reducing risks and safeguarding data
integrity in SAS systems. Developers can improve the security posture of SAS applications
and lower the probability of successful cyberattacks by putting in place input validation,
parameterized queries, output encoding, strong authentication and authorization
mechanisms, secure error handling, data encryption, secure configuration, and continuous
security testing. Secure coding standards should be incorporated into the SAS application
development lifecycle to guarantee that security considerations are prioritized right from
the start of the development process. By adhering to these recommended practices,
organizations can protect essential data assets and strengthen the SAS applications'
resistance to new cybersecurity attacks.

Asian Business Consortium | £/ Page 217

Yarlagadda and Pydipalli: Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity (211-222)

DATA PROTECTION AND INTEGRITY IN SAS

Secure SAS programming requires data security and integrity. SAS applications handle
sensitive personal, financial, and corporate data. Trust and compliance with data privacy
laws require protecting this data from illegal access, modification, and theft. This chapter
covers SAS data protection and integrity best practices.

Encryption: SAS applications need encryption to protect data. Use robust encryption
techniques to protect sensitive data at rest and in transit. Unauthorized parties cannot
read encrypted data without the decryption keys.

Data Masking: SAS programs disguise sensitive data to preserve its usability for authorized
users. By anonymizing or pseudonymizing, masking protects sensitive data during
processing, analysis, and storage. Tokenization, format-preserving encryption, and
character replacement mask data.

Access Controls: Strong access control enforces SAS data confidentiality and integrity.
Using RBAC and ABAC, restrict sensitive data access by user roles, responsibilities,
and attributes. SAS environments should only allow authorized users to access, alter,
or delete data sets.

Secure Data Transmission: Protect SAS client-server data with TLS (Transport Layer
Security). Attackers cannot intercept or tamper with TLS-encrypted data. SAS
applications should use secure communication channels to protect data during
network transfer (Ksiazak et al., 2014).

Data Backup and Recovery: Data backup and recovery enable data availability and
resilience in the case of loss or corruption. Back up sensitive SAS data regularly and
securely off-site. After unanticipated incidents or cyberattacks, disaster recovery
plans can restore data integrity and functionality.

Auditing and Monitoring: Track data access, updates, and usage with SAS application
auditing and monitoring. Log security events and suspected activity for forensic
investigation and incident response. Review audit logs and system operations
regularly for data breaches and unauthorized reviewed d access (Roy et al., 2018).

Data Retention and Disposal: Set SAS data retention and disposal policies to manage data
lifecycles. Set data retention periods based on regulations and company needs.
Securely erase obsolete data to prevent sensitive information from being stored.

Table: Comparing different encryption algorithms suitable for SAS applications

Encryption Encryption Key Performance Compatibility with SAS
Algorithm Strength Length Impact Environments
AES-256 High 256 bits | Low to | Fully compatible
Moderate
RSA Moderate Variable | Moderate to | Compatible with SAS but
to High High may require additional
libraries for implementation
ECC (Elliptic | High 256 bits | Low Compatible ~ with ~ SAS,
Curve efficient for constrained
Cryptography) environments

Page 218

Engineering International, Volume B, No. Z (2018)

Engineering International, Volume B, No. 2 (2018) [SSN 2403-3629

SAS secure programming prioritizes data protection and integrity. Encryption, data
masking, access controls, secure data transmission, data backup and recovery, auditing and
monitoring, and data retention and disposal can improve SAS application security and
reduce data breaches and unauthorized access risks. SAS application design and
development should include data protection to secure sensitive data throughout its
lifecycle. By following these best practices, firms may show data privacy and compliance
while protecting essential data assets from emerging cybersecurity threats.

MAJOR FINDINGS

Key findings and insights from investigating secure programming with SAS are essential
for reducing risks and safeguarding data integrity in SAS systems. This chapter outlines the
main conclusions from considering typical security threats, safe SAS coding practices, and
data protection strategies.

Common Security Risks in SAS Applications: Several frequent vulnerabilities that
seriously jeopardize application security and data integrity were found while
analyzing common security concerns in SAS applications. The main issue that
surfaced was SQL injection, which emphasizes the significance of using prepared
statements and parameterized queries to stop malicious SQL instructions.
Additionally, Cross-Site Scripting (XSS) vulnerabilities were identified, highlighting
the necessity of output encoding strategies to counteract script injection assaults.
Security issues in SAS applications have been linked to insecure data processing
procedures, a lack of input validation, insufficient access controls, and inadequate
error management.

Best Practices for Secure SAS Coding: The significance of taking proactive steps to reduce
security risks and vulnerabilities was highlighted by examining best practices for
secure SAS coding. Input validation, which emphasizes validating and sanitizing
user inputs to prevent injection attacks, has become a core technique. One efficient
method for preventing SQL injection was using parameterized queries. It was noted
that output encoding techniques were crucial XSS vulnerabilities in web-based SAS
applications; output data encryption, robust authentication and authorization
procedures, secure error handling, secure setup, and ongoing security testing were
also shown to be essential elements of safe SAS coding procedures.

Data Protection and Integrity Techniques: According to research on data protection and
integrity strategies, data security in SAS applications is based mainly on encryption.
Sensitive data can be shielded from unwanted access by using robust encryption
techniques for both data in transit and at rest. Tokenization and format-preserving
encryption are two examples of data masking techniques that have successfully
anonymized sensitive data without compromising usability. Data confidentiality and
integrity are ensured in part by strong access controls and secure data transfer
methods like TLS. Furthermore, tools for auditing and monitoring, data backup and
recovery processes, and well-defined policies for data preservation and disposal are
essential for protecting data and preserving its integrity over time.

The main conclusions from the conversation stress the importance of implementing
thorough security measures to reduce risks and safeguard data integrity in SAS
applications. By implementing data protection strategies and safe coding practices,

Asian Business Consortium | £/ Page 219

Yarlagadda and Pydipalli: Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity (211-222)

organizations can mitigate typical security threats and improve the security posture of their
SAS applications. This can also lower the probability of successful cyberattacks and data
breaches. The results emphasize the importance of including security concerns in the
planning, creation, and upkeep of SAS systems to protect sensitive data and comply with
legal and privacy standards. Organizations should prioritize putting these findings into
practice in the future to create a strong security foundation for secure SAS programming,.

LIMITATIONS AND PoLICY IMPLICATIONS

Although using SAS for secure programming techniques dramatically reduces risks and
safeguards data integrity, there are several restrictions and regulatory ramifications to take
into account:

. Implementation Complexity: Implementing strong security measures within SAS
systems can be complex and resource-intensive, requiring specific knowledge and
experience. Implementing and sustaining secure coding techniques may also take
time for organizations.

. Compliance Requirements: Complying with industry standards and data protection
rules complicates efforts to implement secure programming. Organizations may need
to provide more resources and monitoring to ensure that secure coding techniques
comply with regulatory requirements like GDPR, HIPAA, or PCI DSS.

Policy Implications:

. Regulatory Frameworks: Policymakers must persist in crafting and revising
legislative frameworks to tackle nascent cybersecurity risks and foster secure
programming methodologies. Organizations can adopt adequate security measures
and improve compliance by following explicit norms and standards.

o Education and Training: SAS developers and security practitioners can increase
awareness and grow their capacity by implementing policies that support education
and training in safe programming techniques. Cybersecurity education can enable
businesses to adopt and uphold secure coding procedures.

Promoting secure programming techniques with SAS and guaranteeing ongoing efforts to
reduce risks and preserve data integrity across various corporate contexts need addressing
constraints and regulatory consequences.

CONCLUSION

In today's data-driven situations, secure programming using SAS is essential for reducing
risks and protecting data integrity. This study has emphasized how crucial it is to address
shared security threats, implement best practices for secure SAS coding, and embrace data
protection strategies to improve the overall security posture of SAS applications.

The investigation of prevalent security threats in SAS applications highlights the necessity
of taking preventative action to lessen vulnerabilities like SQL injection, cross-site scripting
(XSS), and improper data handling. Best practices for safe SAS coding emphasize the
importance of input validation, parameterized queries, output encoding, strong
authentication, secure error handling, data encryption, and ongoing security testing.

The research also highlights the significance of data security and integrity strategies, such
as data masking, encryption, access controls, secure data transfer, audits, monitoring, data

Page 2200 Engineering International, Volume B, No. Z (2018)

Engineering International, Volume B, No. 2 (2018) [SSN 2403-3629

backup, and well-defined data retention guidelines. These methods help to protect
confidential and sensitive data while preserving its integrity and secrecy over time.

In the future, organizations must address the constraints and policy ramifications of using
SAS for secure programming techniques. This entails controlling the complexity of
implementation, guaranteeing adherence to legal requirements, and encouraging
instruction and training in safe coding techniques.

In conclusion, organizations can create a robust security framework for secure
programming with SAS by implementing the study's findings and recommendations. This
will increase resilience against cyber threats and show a commitment to safeguarding
essential data assets, upholding compliance standards, and protecting data privacy. In
today's dynamic threat landscape, secure programming with SAS entails preventing risks
and safeguarding data integrity through proactive security measures, cooperation,
education, and ongoing efforts.

REFERENCES

Abdulhamid, S. M., Latiff, M. S. A., Abdul-Salaam, G., Madni, S. H. H. (2016). Secure
Scientific Applications Scheduling Technique for Cloud Computing Environment
Using Global League Championship Algorithm. PLoS Omne, 11(7), e0158102.
https://doi.org/10.1371 /journal.pone.0158102

Anumandla, S. K. R. (2018). Al-enabled Decision Support Systems and Reciprocal
Symmetry: Empowering Managers for Better Business Outcomes. International
Journal — of Reciprocal ~ Symmetry and Theoretical ~ Physics, 5, 33-41.
https:/ /upright.pub/index.php/ijrstp/article/view /129

Bilal, M., Asif, M., Bashir, A. (2018). Assessment of Secure OpenlD-Based DAAA Protocol
for Avoiding Session Hijacking in Web Applications. Security and Communication
Networks, 2018. https:/ /doi.org/10.1155/2018 /6315039

Khair, M. A. (2018). Security-Centric Software Development: Integrating Secure Coding
Practices into the Software Development Lifecycle. Technology & Management Review,
3,12-26. https:/ /upright.pub /index.php /tmr/article /view /124

Ksiazak, P., Farrelly, W., Curran, K. (2014). A Lightweight Authentication Protocol for
Secure Communications between Resource-Limited Devices and Wireless Sensor
Networks. International Journal of Information Security and Privacy, 8(4), 62-102.
https:/ /doi.org/10.4018 /1JISP.2014100104

Ly,], Yao, L., He, X, Huang, C., Wang, D. (2018). A Security Analysis Method for Security
Protocol Implementations Based on Message Construction. Applied Sciences, 8(12).
https://doi.org/10.3390/app8122543

Mullangi, K. (2017). Enhancing Financial Performance through Al-driven Predictive Analytics
and Reciprocal Symmetry. Asian Accounting and Auditing Advancement, 8(1), 57-66.
https:/ /4ajournal.com/article /view /89

Mullangi, K., Yarlagadda, V. K., Dhameliya, N., & Rodriguez, M. (2018). Integrating Al and
Reciprocal Symmetry in Financial Management: A Pathway to Enhanced Decision-
Making. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 42-52.
https:/ /upright.pub/index.php/ijrstp/article/view /134

Asian Business Consortium | £/ Page 221

https://doi.org/10.1371/journal.pone.0158102
https://upright.pub/index.php/ijrstp/article/view/129
https://doi.org/10.1155/2018/6315039
https://upright.pub/index.php/tmr/article/view/124
https://doi.org/10.4018/IJISP.2014100104
https://doi.org/10.3390/app8122543
https://4ajournal.com/article/view/89
https://upright.pub/index.php/ijrstp/article/view/134

Yarlagadda and Pydipalli: Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity (211-222)

Patel, A., Qi, W., Taghavi, M. (2011). Design of Secure and Trustworthy Mobile Agent-based
E-marketplace System. Information Management & Computer Security, 19(5), 333-352.
https:/ /doi.org/10.1108/09685221111188610

Roy, D. B., Bhasin, S., Danger, J-L., Guilley, S., He, W. (2018). The Conflicted Usage of
RLUTs for Security-Critical Applications on FPGA. Journal of Hardware and Systems
Security, 2(2), 162-178. https:/ /doi.org/10.1007 /s41635-018-0035-4

Sandu, A. K., Surarapu, P., Khair, M. A, & Mahadasa, R. (2018). Massive MIMO:
Revolutionizing Wireless Communication through Massive Antenna Arrays and
Beamforming. International Journal of Reciprocal Symmetry and Theoretical Physics, 5,22-
32. https:/ /upright.pub/index.php /ijrstp/article / view /125

Shajahan, M. A. (2018). Fault Tolerance and Reliability in AUTOSAR Stack Development:
Redundancy and Error Handling Strategies. Technology & Management Review, 3, 27-
45. https:/ /upright.pub/index.php/tmr/article/view /126

Tejani, J. G. (2017). Thermoplastic Elastomers: Emerging Trends and Applications in Rubber
Manufacturing. Global Disclosure of Economics and Business, 6(2), 133-144.
https://doi.org/10.18034 / gdeb.v6i2.737

Vorakulpipat, C., Sirapaisan, S., Rattanalerdnusorn, E., Savangsuk, V. (2017). A Policy-
Based Framework for Preserving Confidentiality in BYOD Environments: A Review
of Information Security Perspectives. Security and Communication Networks, 2017.
https:/ /doi.org/10.1155/2017 /2057260

Wenge, O., Schuller, D., Rensing, C., Steinmetz, R. (2014). On Developing Fair and Orderly
Cloud Markets: QoS- and Security-Aware Optimization of Cloud Collaboration.
International Journal of Organizational and Collective Intelligence, 4(3), 22-43.
https:/ /doi.org/10.4018 /ijoci.2014070102

Ying, D., Patel, B., & Dhameliya, N. (2017). Managing Digital Transformation: The Role of
Artificial Intelligence and Reciprocal Symmetry in Business. ABC Research Alert, 5(3),
67-77. https:/ /doi.org /10.18034 /ra.v5i3.659

—0--

Page 222 Engineering International, Volume B, No. Z (2018)

https://doi.org/10.1108/09685221111188610
https://doi.org/10.1007/s41635-018-0035-4
https://upright.pub/index.php/ijrstp/article/view/125
https://upright.pub/index.php/tmr/article/view/126
https://doi.org/10.18034/gdeb.v6i2.737
https://doi.org/10.1155/2017/2057260
https://doi.org/10.4018/ijoci.2014070102
https://doi.org/10.18034/ra.v5i3.659

