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ABSTRACT 

There is a need for quick databases that can deal with enormous amounts of 
data because of the rapid growth of the Internet and the increase in the number 
of websites that allow users to develop their material, such as Facebook and 
Twitter. To accomplish this goal, new database management systems, which 
will be referred to collectively as NoSQL, are currently under development. 
Because there are various NoSQL databases, each with unique performance, it 
is essential to evaluate database performance. MongoDB, Cassandra, and 
Couchbase are the names of the three significant NoSQL databases considered 
for the performance evaluation. To investigate performance, a variety of 
workloads were developed. The read and update operations served as the basis 
for the evaluation that was carried out. The results of this study provide the 
ability to select the NoSQL database that best meets their requirements in terms 
of the particular mechanisms and applications. 
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INTRODUCTION 

Databases are considered an essential component of modern companies and are used 
virtually every country. Using a standardized data manipulation language called SQL, 
relational databases make storing, extracting, and manipulating data possible (Ballamudi, 
2019c). Until now, relational databases have been the ideal option for enterprise settings. On 
the other hand, relational databases have several drawbacks that become more apparent as 
the amount of data saved and analyzed continues to expand. These drawbacks include 
restrictions on scalability and storage, a reduction in the efficiency of querying the database 
due to the massive amounts of data, and an increase in the difficulty of storing and 
managing more extensive databases. NoSQL databases are a fresh new database model 
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designed to overcome these restrictions (Gutlapalli, 2017c). This model was developed 
using a collection of recent characteristics. Nonrelational databases came about due to a 
technological breakthrough; these databases can be utilized independently or in addition to 
relational databases (Desamsetti, 2016a). In other words, relational database management 
systems (RDBMS) that do not employ SQL are not NoSQL. NoSQL databases are database 
management systems that do not use the relational paradigm and are incompatible with 
SQL. A database management system (DBMS) that does not employ the relational paradigm 
is called a NoSQL DBMS (Desamsetti, 2016b). 

NoSQL databases typically share the ability to readily scale horizontally, in addition to 
being nonrelational and not requiring defined schemas. This is something else that they 
have in common. Due to the lack of relations, join operations, customary in SQL, are 
rendered unnecessary here. Aside from that, completely different NoSQL implementations 
will each have a highly distinctive look. The performance of relational databases is 
improved by NoSQL thanks to a combination of new characteristics and advantages offered 
by the technology (Von & Datta, 2012).  NoSQL databases offer greater flexibility and are 
more easily scaled horizontally when compared to conventional databases. NoSQL 
databases are anticipated to automatically manage and disseminate data, overcome errors, 
and restore the entire system automatically. The inconsistency of the data kept in NoSQL 
databases made them famous and gave them their name when the NoSQL technology 
started gaining traction. There might be a significant barrier for those businesses and 
systems in which a high level of consistency was necessary. 

DATA MODELING TECHNIQUES 

Scalability, performance, and consistency are used to compare NoSQL databases 
(Gutlapalli, 2017b). This element of NoSQL is well-studied in practice and theory since 
certain non-functional qualities are typically the key justification for its use, and 
fundamental distributed system conclusions like the CAP theorem apply to NoSQL 
systems. Unlike relational databases, NoSQL data modeling is poorly explored and lacks 
coherent theory (Ballamudi, 2019b). We briefly compare NoSQL system families from a data 
modeling perspective and discuss some standard modeling methodologies in this article. 
SQL and relational models were created to interface with users long ago. User-centricity had 
significant implications: 

 SQL prioritizes aggregated reporting data over individual data elements because end 
users prefer it. 

 Human users cannot explicitly manage concurrency, integrity, consistency, or data 
type validity. That's why SQL prioritizes transactional guarantees, schemas, and 
referential integrity. 

However, software applications may not be interested in in-database aggregation and can 
control integrity and validity themselves. Additionally, removing these features greatly 
affected storage performance and scalability. This started a new data model evolution: 

 Key-value storage is simple but powerful. Many strategies below work well with this 
paradigm (Pagán et al., 2015). 

 Key-value model applicability to critical range processing scenarios is one of its most 
significant drawbacks. The ordered Key-Value model enhances aggregation and 
overcomes this issue. 
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 The ordered Key-Value model is powerful but lacks a value modeling framework. 
Applications can model values, but BigTable-style databases model values as a map-
of-maps-of-maps of column families, columns, and timestamped versions. 

 Document databases boost BigTable in two ways. First, values with schemes of any 
complexity, not just a map of maps. The second is database-managed indexes in some 
systems. Complete Text Search Engines offer customizable schema and automatic 
indexes, making them connected. Document databases group indexes by field names, 
while Search Engines group by field values (Gutlapalli, 2017a). Key-value stores like 
Oracle Coherence are moving toward document databases by adding indexes and in-
database entry processors (Ballamudi, 2019a). 

 Finally, graph data models evolved from Ordered Key-Value models. Hierarchical 
modeling makes alternative data models competitive in this domain, while graph 
databases provide transparent business entity modeling. Since many graph 
databases may model values as maps or documents, they are similar to document 
databases. 

CONCEPTUAL TECHNIQUES 

The fundamental ideas behind NoSQL data modeling will be covered in this part. 

 Denormalization involves transferring data into numerous documents or tables to 
ease query processing or fit user data into a data model. Most of the methods in this 
article use denormalization. Denormalization aids these trade-offs: 

 IO per query vs. total data volume. Denormalization groups all query data 
together. Various query flows often access the same data in multiple ways. We 
must duplicate data, increasing data volume. 

 Total data volume vs. processing complexity. Modeling-time normalization and 
query-time join complicate query processors, especially in distributed systems. 
To ease query processing, denormalization stores data in a query-friendly 
structure (Seera & Jain. 2015). 

 Aggregates: Soft schema is supported by all significant NoSQL genres: 

 Key-value stores and Graph Databases don't confine values; therefore, they can 
be in any format. Composite keys can change several records for one business 
entity. A user account can be depicted as a series of composite keys like 
UserID_name, UserID_email, UserID_messages, etc. User entries are not 
recorded if they have no email or messages. 

 BigTable models with flexible column families and cell versions support soft 
schema. 

 Document databases are schema-less, but some support user-defined schema 
validation. 

 Soft schema lets one create nested entities and change their structures. This feature 
offers two main functionalities: 

 Minimizing one-to-many relationships with nested items reduces joins. 
 Masking "technical" distinctions between business entities and representing 

heterogeneous entities with one set of documents or tables. 
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This shows eCommerce product entity modeling. First, all products have ID, Price, and 
Description. Next, we learn that different products have different properties, such as Book 
Author or Jeans Length. These qualities are one-to-many or many-to-many, like Music 
Album Tracks. Next, fixed types may not model some entities. Jeans characteristics vary by 
brand and maker. Relational normalized data models can solve all these problems but could 
be more elegant (Thaduri, 2021). Soft schema lets us model all goods and their properties 
with one Aggregate (product). Update flows should be carefully considered because 
embedding with denormalization can affect performance and consistency. 

 Application Side Joins: Joins are rarely supported in NoSQL. NoSQL's "question-
oriented" structure means joins are generally handled at design time, unlike 
relational models, which are held at query execution time. Denormalization and 
Aggregates, or embedding nested items, can often prevent query time joins, which 
usually hurt performance. Joins are often unavoidable and should be handled by an 
application. The main uses are: 

 Links model many-to-many relationships and require joins. 
 Frequent entity internal changes make aggregates inapplicable. Rather than 

modifying a value, recording an event and joining the records at query time is 
better. Message systems can be described as User entities with nested Message 
entities. If messages are often appended, it may be best to extract Messages as 
distinct entities and join them to the User at query time: 

GENERAL MODELING TECHNIQUES 

This section covers general modeling strategies for NoSQL implementations. 

 Atomic Aggregates: Not all NoSQL solutions support transactions. Distributed locks 
or application-managed MVCC can accomplish transactional behavior. However, 
Aggregates are often used to guarantee some ACID features. Robust transactional 
machinery is essential in relational databases because normalized data requires 
multi-place updates. However, Aggregates let one store and edit a business entity as 
one document, row, or key-value pair (Thaduri, 2020). Data modeling using Atomic 
Aggregates is not a complete transactional solution, but it can be used provided the 
store guarantees atomicity, locks, or test-and-set instructions (Hosen et al., 2021). 

 Enumerable Keys: By hashing the key, an unordered Key-Value data architecture 
may partition entries across different servers, which is its most prominent feature. 
Sorting complicates things, but an application can benefit from sorted keys even if 
storage doesn't. Example: email message modeling. Some NoSQL stores have atomic 
counters for sequential IDs. UserID_messageID can be used as a composite key to 
store messages. Previous messages can be traversed with the latest message ID. We 
can also cross prior and subsequent messages for any message ID. Daily buckets can 
hold messages. This lets one move through a mailbox from any date or the present 
date (Chen et al., 2019). 

 Dimensionality Reduction: Dimensionality Reduction maps multidimensional data 
to Key-Value or other non-multidimensional structures. Traditional geographic 
information systems index with Quadtrees or R-trees. Changing these structures in 
place is costly when data volumes are significant. We may also traverse the 2D 
structure and flatten it into a list. Geohashes are famous examples of this. Geohashes 
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fill 2D space with a Z-like scan and encode each motion as 0 or 1 depending on 
direction. The longitude and latitude bits are interleaved with moves. The image 
below shows the encoding process, with black and red bits representing longitude 

and latitude. Geohashes use bit-wise coding proximity to estimate the distance 
between regions, as seen in the. Geohash encoding stores geographical data using 
fundamental data structures like sorted key values preserving spatial relationships. 
The BigTable Dimensionality Reduction method was explained (Khan et al., 2017). 

 Index Table: An Index Table is a simple way to use indexes in stores without internal 
indexes. BigTable-style databases dominate such storage. Create and maintain a 
custom table with access-pattern-based keys. The master table stores user accounts 
that can be accessed by ID. An additional table with city as a key can provide a query 
to fetch all users by city: An index table can be updated with each master table update 
or in batches. Either way, it increases performance penalties and consistency issues 
(Thaduri, 2019).  

 Composite Key Index: Composite key is generic but valuable in a store with ordered 
keys. Composite keys and secondary sorting create a multidimensional index 
comparable to Dimensionality Reduction. Example: Take a set of user statistics 
records. Suppose the database supports partial key matches (like BigTable-style 
systems do). In that case, we can utilize keys in a format (State:City: UserID) to iterate 
over records for a state or city to aggregate these statistics. 

 Composite Key Aggregation: Composite keys can be used for indexing and 
grouping. Consider an example. Internet users and their site visits are recorded in 
several log files. We want to count unique users for each Site. The SQL statement 
below is similar. Keeping all records for one User collocated allows us to get a frame 
into memory (one User can't make too many events) and eliminate site duplicates 
using a hash table or something (Bodepudi et al., 2021). One way is to create one entry 
per person and add sites when occurrences occur. In most implementations, entry 
modification is less efficient than entry insertion (Gutlapalli, 2016b). 

 Inverted Search—Direct Aggregation: This method is more data processing than 
modeling. This tendency also affects data models. This method uses an index to 
discover data that fulfills requirements and aggregates it using original 
representation or complete scans. Consider an example (Thaduri, 2017; 
Mandapuram, 2017b). Internet surfers and their site visits are recorded in several log 
files. Let each record contain user ID, classifications (Men, Women, Bloggers, etc.), 
city, and visited Site. The purpose is to characterize the audience that meets some 
criteria (Site, city, etc.) in terms of unique users for each category. Searching for 
people who fulfill the criteria is efficient with inverted indexes like {Category -> [user 
IDs]} or {Site -> [user IDs]}. Such indexes can intersect or unify user IDs (which is 
efficient if user IDs are stored as sorted lists or bit sets) to find an audience. Describe 
an audience like an aggregation query. It cannot be efficiently handled by an inverted 
index with several categories. To address this, create a direct index {UserID -> 
[Categories]} and iterate over it to generate a final report. See this schema below. 
Finally, random record retrieval for each audience user ID can be wasteful. This can 
be solved using batch query processing. This allows precomputed user sets for 
diverse criteria to compute all reports for this batch of audiences in one direct or 
inverse index search (Pokorny, 2013; Thaduri, 2018). 
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ENTERPRISE CONTENT MANAGEMENT 

"Enterprise content management" (ECM) "comprises the strategies, processes, methods, 
systems, and technologies that are necessary for capturing, creating, managing, using, 
publishing, storing, preserving, and disposing of content within and between 
organizations" according to Wikipedia. ECM encompasses a comprehensive range of 
functional areas, including 

 Administration of Documents; 

 A collaborative effort among the many support systems; 

 Management of Content on the Web; 

 Administration of Records; 

 Workflow Management and Management of Business Processes 

ECM systems are currently confronted with various difficulties, the most significant of 
which is the scaling problem, in which the volume of data grows at a rate greater than that 
of the available computing capabilities (Gutlapalli, 2016a). When organizations move to 
cloud-enabled solutions, large multi-tenant databases are created (Mandapuram et al., 
2020). Additionally, organizations consume data from social media platforms and data 
streams generated by devices (Mandapuram, 2017a). Enterprise data and its variety are 
growing in volume and velocity at an exponential rate. A costly approach is to scale up, 
which means replacing a smaller machine with a larger one. A 10-terabyte system could cost 
100 times more than a 1-terabyte system (Dai et al., 2013). 

Lal pointed out in 2015 that the problem is not information overload but rather a breakdown 
of the filtering system. We are rapidly moving away from outdated data persistence 
methods since relational database systems have inherent scalability issues. Because of this, 
a wide variety of solutions known as NoSQL (which stands for "not only SQL") have been 
developed to address the problems listed above (Ballamudi, 2020). 

ELASTICSEARCH 

Elasticsearch is the data store we decided to use for our search architecture. The most 
important advantages are its high scalability and excellent search capabilities. On a laptop, 
the Elasticsearch database may be installed, and once it is, we are ready to begin working 
immediately with no configuration required (Lal & Ballamudi, 2017). On the other hand, 
Elasticsearch may be set up to manage enormous databases when placed on a multi-node 
cluster and configured appropriately. Elasticsearch is deployed on a 75-node cluster split 
across two data centers by Synthesio (Lal, 2016). This configuration enables the company to 
quickly retrieve up to 50 million documents from tens of billions (WEB (d)). 

Although there are NoSQL document solutions (such as MongoDB) that provide more 
functionality and flexibility than Elasticsearch, the capabilities of Elasticsearch are still the 
most excellent fit for our domain and architecture in mind. In terms of search performance, 
Elasticsearch is superior to MongoDB and other platforms that offer comparable 
functionalities, according to the evaluation findings (Desamsetti, 2020). Elasticsearch 
performs approximately four to five times faster than MongoDB when the request flows 
consist of fifty percent reading and fifty percent writing. Elasticsearch can conduct search 
operations against nested objects 20 times quicker and aggregation operations 40 times 
faster. In addition, the perforations (Ballamudi & Desamsetti, 2017). 
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ARCHITECTURE FOR ENTERPRISE SEARCH 

It is only possible to determine whether a document database model will perform efficiently 
by reading a description of the model (Desamsetti & Mandapuram, 2017). One must 
consider how users will query the database, the quantity of data inserted, and the frequency 
and nature of document updates. Because of this, we think about the patterns of data 
utilization before making decisions about the data model and the architecture (Thaduri & 
Lal, 2020). We propose to use two data stores as the foundation for the persistence 
architecture. The primary store is a SQL database, and both the insertion of new data and 
the upkeep of the existing data are performed in this database (Mandapuram et al., 2018). A 
database powered by Elasticsearch serves as the secondary store, and its primary functions 
are to search for and retrieve data. After being successfully added to the primary database, 
the newly created data objects are replicated to the secondary storage (Gutlapalli et al., 
2019). The following are some of the benefits of taking this approach: 

 A lighter strain is placed on the primary store because the secondary store is 
responsible for managing search and retrieval requests; 

 requests for searching and retrieving data do not have to wait for operations to be 
written for index locks to be released; 

 Elasticsearch inverted indexes are utilized for quick searching, including full-text 
searching; 

 Elasticsearch sharding and replication are used to improve performance in response 
to an increase in the number of data and requests; 

 Replication of Elasticsearch is used to ensure that high data availability is maintained. 

No locking: Write transactions in relational databases involving various data items (such as 
tables and indexes). When a transaction is in progress, any objects used must first be 
"locked," meaning they must be rendered unavailable to other processes. This indicates that 
other requests must wait until the transaction releases the locks, including read and write. 
This results in a rapid decline in performance whenever the number of requests increases 
(Rats, 2017). Our model makes use of the no-locking write functionality that Elasticsearch 
offers. Since Lucene indexes used by Elasticsearch are immutable, there is no requirement 
to lock the index before writing data, as Amin & Mandapuram (2021) stated. Instead of 
merging existing index segments, new index segments are generated to index newly added 
data; this occurs later in the background. No matter how rapidly new data is being 
duplicated from the primary store, the Elasticsearch secondary database will always be 
accessible for searches and retrieving stored information (Desamsetti, 2018). 

Scalability: The Elasticsearch database is divided up into a few different shards. When there 
is a greater need for storage space, additional nodes can be added to the cluster. When other 
nodes are added, Elasticsearch will immediately move any affected shards (Lal et al., 2018). 
Therefore, a database with five shards and no replicas can operate on a cluster with 

anywhere from one to five nodes (Bodepudi et al., 2019). Availability: It is possible to set 
up an Elasticsearch database to support replicas, also known as copies, of the shards. The 
replication factor of Elasticsearch refers to the number of copies of the index that must be 
kept (Desamsetti & Lal, 2019). For instance, if the replication factor is set to two, 
Elasticsearch will generate and keep track of two replicas of each added shard. Because 
Elasticsearch distributes replicas of a shared among the many nodes that make up a cluster 
(and because using replication factor 2 requires a cluster with at least three nodes), the 
minimum size of a cluster required is three. 
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Replicas can scale Elasticsearch databases to support an arbitrary number of nodes. While 
fresh data is written to the primary (master) copy of the shard, it is spread among the copies 
and then copied to the replicas. Search requests are also dispersed among the replicas 
(Desamsetti, 2021). On display in Elasticsearch cluster consisting of five shards and a 
clustering factor of two. Here, S(i) refers to a master copy of shard i, R(i,j) represents a replica 
of shard i, and N1, N2, and N3 are cluster nodes. 

Shards and replicas make it possible to process data requests more quickly. In addition, 
because of the replicas, the cluster can continue to operate normally even if some of the 
nodes in the cluster are unavailable (Hosen & Gutlapalli, 2021). Although each cluster node 
contains a full data copy, it is unsafe to allow users in when the connection between all three 
nodes has been lost. This can lead to a phenomenon known as split brain, which occurs 
when users interact with three independent systems simultaneously. The sample cluster 
presented earlier is still fully functional even if one of the cluster nodes becomes unavailable 
(Karanjekar & Chandak, 2017). 

ECM DATA MODEL 

ECM systems append metadata to documents to improve the efficiency of business 
procedures inside an organization. Although the metadata fields can vary, the data model 
should primarily consist of the following: 

 The complete written content of the document 

 Title of the document number of the document 

 Leader or responsible party 

 The beginning of creation 

 The cut-off time 

 The groups to which the document belongs (such as the case, the folder, or the project). 

 Status 

 A list of task descriptions that include comments, the author of the task, the person 
in responsibility for the task, the kind of the task, and the task's status 

The named metadata fields contain all the information needed for the data access attributes 
detailed above or can be generated from those fields (Koehler et al., 2020). Maintaining our focus 
on optimizing efficiency, we have added an element containing a list of user IDs authorized to 
access the content (Mandapuram & Hosen, 2018). This is a one-of-a-kind list of user IDs that 
includes the user ID of the person in charge of the document in addition to the user IDs of the 
authors of the tasks in the document as well as the user IDs of the persons in charge of the tasks 
in the document (a user ID is only included in this list once, regardless of how many times the 
ID appears in the role of a task author or a person in charge of the task or document). 

The parent-child relationship that exists between the document and its tasks is represented by 
the data object that has been described. Relational databases make use of two tables and a 
parent-child relationship between the two tables (Ballamudi et al., 2021). Aggregated models 
are preferred by NoSQL databases, meaning tasks should be represented as nested objects and 
stored along with the content as a single aggregated item. However, there are more effective 
courses of action than this. Creating two distinct data types—one for documents and one for 
tasks—and storing a reference to a parent document within a job provides a feasible 
alternative. For situations like this, Elasticsearch enables users to arrange one data object type 
to function as a child of another data object type (Kaur & Kanwalvir, 2016). 
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The two possible configurations—nested and parent-child—have several benefits and 
drawbacks. The following are some of the many benefits of using a parent-child model 
(WEB (a)): 

 It is possible to make changes to the parent object without having to re-index the 
children; 

 It is possible to create new child objects, modify existing ones, or remove them 
without having any impact on the parent or the other children; 

 When a search is performed, the results may include child documents as possible 
matches. 

The primary benefit of employing the layered model is that, on average, it can be anywhere 
from five to ten times quicker (WEB (b)). 

It is also crucial that ECM systems include the ability to search for tasks (for example, to 
provide a list of tasks that a specific person is currently working on). As a result, the parent-
child model is a more suitable contender for our investigation. Still, there is one more option 
available to us here (Deming et al., 2018). Since the task data is typically requested for the 
present data, we might want to think about making the following changes to our model: 

 Remove any outdated data from the primary store, and make sure that only the 
secondary storage has all of the data; 

 We should carry out advanced task searches using the principal store. 

In this situation, the nested model might be the best option for the secondary store. 
However, we will continue to focus on the parent-child model and not pursue this particular 
line of inquiry now (Dekkati et al., 2016). 

It is also crucial that ECM systems include the ability to search for tasks (for example, to 
provide a list of tasks that a specific person is currently working on). As a result, the parent-
child model is a more suitable contender for our investigation. Still, there is one more option 
available to us here (Dekkati & Thaduri, 2017). Since the task data is typically requested for 
the present data, we might want to think about making the following changes to our model: 

 Delete any older data from the primary storage, and only keep complete copies on 
the secondary store. 

 We should carry out advanced task searches using the principal store. 

In this situation, the nested model might be the best option for the secondary store. 
However, we will continue to focus on the parent-child model and not pursue this particular 
line of inquiry now. 

In this scenario, the Document ID and Task ID header properties are the exclusive keys for 
their respective objects. The Task object contains a reference to its parent Document object 
under the Document ID property of the Task object (Ballamudi, 2016). In this case, we use 
denormalization, and the document number is also incorporated into the task object. This 
can significantly boost efficiency because the document number is frequently utilized in 
activity-related searches. Due to the infrequency of changes to document numbers, the 
administrative burden of storing duplicated data is of very minor significance. The User IDs 
attribute holds the IDs of users with direct access to the document (for more information on 
this topic, check the prior section of this chapter) (Nadeem et al., 2017). 
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PERFORMANCE 

There are some findings of the evaluation of the performance of NoSQL databases that are 
available (WEB (c)). The evaluation is carried out on several typical workloads, such as those 
offered by the YCSB (Yahoo Cloud Serving Benchmark) framework (WEB (e)), with the 
primary objective of providing a basis for comparing various NoSQL systems (Reddy et al., 
2020). We use the methodology created in our prior research supported by the European 
Union and titled "Definition and Analysis of Models for Advanced Data Visualisation". In 
contrast to the method taken by YCSB, we begin the definition of workload with user 
business actions (such as "show my urgent tasks") and the frequency with which they occur. 
User business tasks are further broken down into sequences of user interactions (i.e., a user 
request that can be carried out by one or more data requests without user engagement). User 
interactions can also be broken down into a string of data requests. Because of this, we can 
construct a workload and estimate the performance of our search model for the specified 
number of business users (Thaduri et al., 2016). We utilize a list of data request sequences 
for performance measurement. This list includes search (for example, full-text search inside 
document content), filtering and processing of aggregates, and document and task creation 
and update (Dekkati et al., 2019). We make several assumptions on the rates at which an 
ECM user carries out data request sequences. The research findings referred to above are 
utilized in making assumptions regarding the frequencies of completion of the data request 
sequences by an ECM user. The many examples of user activities and interactions used for 
performance testing are outlined (Thodupunori & Gutlapalli, 2018). 

CONCLUSION 

We created a multilingual persistence architecture with two data stores: SQL database and 
Elasticsearch. Multi-user access to data objects, while the secondary store efficiently handles 
enormous search requests. Inserted/updated into primary store and searched/accessed in 
secondary store. The primary store enables safe concurrent processing of data through 
ACID transactions. We will improve our model to capitalize on Elasticsearch's scalability. 
The primary store is no longer needed if all searchable data is in the secondary store. This 
would limit primary store growth, which is significant due to SQL's scaling issues. Users of 
different business roles may execute data request sequences to varying frequencies due to 
their activity patterns. Future workload generation improvements should consider this.  
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