
Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 117

Front-End Development in React: An Overview

Songtao Chen1, Upendar Rao Thaduri2, Venkata Koteswara Rao Ballamudi3*

1Jiujiang Vocational and Technical College, Jiangxi, China
2ACE Developer, iMINDS Technology Systems, Inc., Pittsburgh, PA 15243, USA
3Sr. Software Engineer, HTC Global Services, USA

*Corresponding Contact:

Email: venkata.bvk@gmail.com

ABSTRACT

In front-end development, the function that react.js plays is becoming increasingly
important, providing developers with new options to create new applications. This
article discusses how react.js assists in constructing user interfaces and the benefits
it offers in building front-ends. According to the survey carried out by Web
Technology Surveys, react.js is utilized by a significant percentage of all websites
today. We will not exaggerate the situation if we declare that React.JS is used
everywhere. When it comes to websites, new audiences have various interests. This
article discusses critical aspects of the framework, including its advantages over
competing frameworks, how it works, and its architecture.

Key words:
JavaScript, React.JS, Node.JS, Angular, Virtual DOM, Web Development, Front-End
Development

INTRODUCTION

These days, web developers more commonly refer to the products they construct as web
applications instead of web pages. Although there isn't a clear-cut distinction between the
two, web applications are typically more interactive and dynamic. They give the user the
ability to carry out actions and get a reaction in response to those actions. The front-end
development industry has never been more intriguing or complicated than it is right now.
Brand-new applications, libraries, frameworks, and plugins are released every other day.
There is plenty of information to absorb. Grab's online team has been staying current with
the most recent recommendations for best practices, and as a result, our web apps now use
the modern JavaScript environment (Mandapuram, 2016). In the traditional model, the
browser is responsible for rendering HTML after receiving it from the server. It is necessary
to perform a full page refresh whenever the user navigates to a new URL, and the server
will transmit the newly generated HTML for the page to the user.

On the other hand, client-side rendering is utilized rather than server-side rendering in
current SPAs. The first page of the app is loaded from the server into the browser, along
with any scripts (frameworks, libraries, or app code) and stylesheets necessary for the

12/31/2019 Source of Support: None, NoConflict of Interest: Declared

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially,

and although the new works must also acknowledge & be non-commercial.

http://creativecommons.org/licenses/by-nc/4.0/

Chen et al.: Front-End Development in React: An Overview (117-126)

Page 118 Engineering International, Volume 7, No. 2 (2019)

application as a whole. No action is taken to refresh the current page whenever the user
visits a different page. The HTML5 History API makes the necessary changes to the page's
URL. The browser sends AJAX queries to the server to retrieve any new data needed for the
new page. Typically, this data is stored in JSON format. After that, the SPA automatically
refreshes the page with the data using JavaScript, which it had previously retrieved while
loading the initial page. This architecture operates in a manner that is comparable to that of
native mobile applications. The advantages are that the application responds more quickly,
and users are spared the flash between page navigations due to full-page refreshes. The
server receives fewer HTTP requests because the same assets do not have to be downloaded
repeatedly whenever a page is loaded (Desamsetti & Mandapuram, 2017). Clear separation
of responsibilities between the client and the server; it is simple to construct new clients for
various platforms (such as mobile, chatbots, and smartwatches) without having to rewrite
the code that runs on the server. Altering the technological stack individually on the client
and server is also possible, provided the API contract is not violated (Mandapuram, 2017a).

Initial page load time is longer since the framework, app code, and assets needed for many
pages must be loaded simultaneously. Configuring our server to direct all requests to a single
entry point and then letting client-side routing take over from there is an additional step that
has to be completed on our server. This can be done by following the instructions in the
following section. The rendering of content in SPAs depends on JavaScript, but not all search
engines can run JavaScript when they scan websites; therefore, search engines may interpret
the material on our page as empty (Gutlapalli, 2017a). This unintentionally impacts the app's
SEO (search engine optimization). A clear client-server separation scales well for bigger
engineering teams, as the client and server codes may be developed and deployed
independently. This is because classic server-side rendered programs are still a viable choice.
This is especially true for Grab, as we often have numerous client apps simultaneously
accessing the same API server (Mandapuram, 2017b). The structuring of client-side JavaScript
has grown increasingly significant due to the trend among web developers toward creating
applications rather than pages. It is common practice to insert bits of jQuery code onto each
website page that is rendered server-side to provide user interactivity. However, when
building huge apps, jQuery alone is not adequate. In the end, jQuery is primarily a library for
manipulating the Document Object Model (DOM), and it is not a framework; hence, it does
not establish a distinct structure and organization for our application.

Frameworks written in JavaScript have been developed to offer higher-level abstractions
over the DOM (Gutlapalli, 2017b). These abstractions make it possible to store state in
memory rather than in the DOM itself. The ability to reuse recommended concepts and best
practices when developing applications is another advantage of employing frameworks.
Because the code is structured according to a format that is already familiar to the new
engineer on the team, even though they are not familiar with the code base itself, it will be
easier for them to grasp the code because it has been arranged according to a format that is
already established in the framework. New engineers will benefit from tapping into their
colleagues' and community's knowledge and experience to get up to speed as quickly as
possible. Popular frameworks provide a large number of tutorials and guides.

NEW-AGE JAVASCRIPT

It is essential to become conversant in the language of the web, which is either JavaScript or
ECMAScript, before delving into the myriad of facets that comprise the construction of a
JavaScript online application. JavaScript is a highly flexible programming language that can

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 119

be used to create web servers, native mobile apps, and desktop applications, among other
things.

Before 2015, the most recent significant change was ECMAScript 5.1, released in 2011. On
the other hand, JavaScript has suddenly witnessed a substantial surge of advances within a
relatively short period in recent years. ECMAScript 2015, formerly known as ECMAScript
6, was made available to the public in 2015, and with it came a plethora of syntactic features
designed to make the process of developing code more manageable. If we are interested in
learning more about the past of JavaScript, Auth0 has penned a good piece on the topic that
we may read. Even now, not all browsers have completed the implementation of all of the
requirements of the ES2015 specification. Developers can write ES2015 code in their
applications thanks to tools like Babel, which then transpires that code down to ES5 to be
compatible with browsers (Gutlapalli, 2017c).

It is essential to have a working knowledge of both ES5 and ES2015. Although ES2015 has been
around for a while, most open-source software and Node.js applications are still written in ES5.
We may not be able to use syntax from ES2015 if we perform debugging in our browser's
console. On the other hand, the documentation and example code for many contemporary
libraries, some of which we will discuss further below, are still written in ES2015. At Grab, we
use babel-preset-env to take advantage of the productivity gain that comes from the syntactic
changes that the future of JavaScript delivers, and we are pleased with the results thus far. As
native browser support expands for further ES language capabilities, babel-preset-env
intelligently identifies which Babel plugins are required (which new language features are not
supported and must be transpired). babel-preset-stage-3 is a complete specification that will
most likely be implemented in browsers; if we prefer employing language features that have
already been stabilized, we may discover that babel-preset-stage-3 is a better option for us
because it is more suited. ES5 should receive at least a day or two of review, and ES2015 should
be investigated. The ES2015 features "Arrows and Lexical This," "Classes," "Template Strings,"
"Destructuring," "Default/Rest/Spread operators," and "Importing and Exporting modules" are
the ones that are utilized the most frequently by developers.

USER INTERFACE — REACT

React is the JavaScript project that has dominated the front-end ecosystem recently. Facebook
smarties designed and open-sourced React. Developers write and compose React web
interface components. React introduces radical concepts and challenges developers to rethink
best practices (Capała & Skublewska-Paszkowska, 2018). Web developers were taught for
years to create HTML, JavaScript, and CSS separately. React recommends writing HTML and
CSS in JavaScript. After testing it, this doesn't seem that ridiculous. Because front-end
development is moving toward component-based development. Features of React:

Declarative: We wish to see something, not how to get it. Using jQuery, developers had to
alter the DOM to switch app states. In React, we transform the state within the
component, and the view will update itself according to the state. Render() markup
makes it easy to predict the component's appearance. A pure prop-state function, the
idea is functional. In most circumstances, a React component is defined by props
(external parameters) and state (internal data). The same support and state yield the
same view. Functional features and pure functions are easy to test. React's well-
defined interfaces make testing easy. We can try a member by passing it into different
props and states and comparing the displayed output.

Chen et al.: Front-End Development in React: An Overview (117-126)

Page 120 Engineering International, Volume 7, No. 2 (2019)

Maintainable: Component-based views encourage reuse. React code is self-documenting
when prop Types are defined so the reader knows what to use. Finally, our
perspective and logic are contained in the component and should not affect other
features. If the element has the same props, large-scale refactoring is trivial.

High Performance: React employs a virtual DOM (not a shadow DOM) and re-renders
anything when a state changes. Why is a virtual DOM needed? Modern JavaScript
engines are fast, but DOM reading and writing are slow. React stores a lightweight
DOM virtualization in memory. Re-rendering everything is misleading. React re-
renders the in-memory DOM, not the actual DOM. When component data changes,
a new virtual representation is constructed and compared to the previous model.
Patching the browser DOM with minimal modifications is then done.

The React API surface is smaller; there are few APIs to understand, and they change rarely.
The React community is one of the largest, and it has a robust ecosystem of tools, open-
sourced UI components, and excellent online resources to learn React. Many React
development tools improve the developer experience. React Developer Tools lets us inspect,
view, and change component props and states in our browser (Ciliberti, 2017). Hot
reloading with webpack lets us see code changes in our browser without refreshing. Front-
end development requires editing code, saving, and restoring the browser. Hot reloading
helps by eliminating the last step. Facebook provides coded scripts to migrate code to new
APIs after library changes. This makes upgrading easy. The Facebook team deserves praise
for their React development efforts.

Over time, more performant view frameworks than React have developed. React may be a
challenging library, but its ecosystem, usability, and benefits are top-notch. Facebook is also
rewriting the reconciliation process to speed up React (Madaj, 2018). React has taught us to
create better code, maintain web projects, and be better engineers. We like it. Watch the
React homepage lesson on making a tic-tac-toe game to learn about React. The highly-rated
free course React Fundamentals by React Router's developers React specialists is for
additional in-depth learning. Complex ideas not provided by React documentation are also
covered (Naiki et al., 2018). Facebook's Create React App scaffolds React projects with
minimal configuration and is ideal for new React projects.

STATE MANAGEMENT — FLUX/REDUX

As our app expands, its structure may become messy. React has no elegant mechanism to
exchange and show common data across app components (Desamsetti, 2016). React is
merely the view layer; it doesn't influence how we arrange our app's model or controller in
typical MVC approaches. To solve this, Facebook created Flux, a unidirectional data flow
app design that complements React's composable view components. Find out how Flux
works. Unidirectional data flow makes app changes easier to track and more predictable.
Concerns are separated - Flux architecture components have clear roles and are strongly
decoupled. It works nicely with declarative programming since the store can update the
view without defining how to switch states. Flux is not a framework. Therefore, developers
have explored several Flux pattern implementations. Finally, Redux won. Redux is the
recommended state management library for React developers, combining Flux, Command
pattern, and Elm design. The main concepts are:

• A single JavaScript object (POJO) describes the app state.
• Dispatch an action (POJO) to modify the state.

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 121

• A reducer is a pure function that creates a new state from the current state and action.

Though uncomplicated, the concepts allow apps to:

• Render state on server and boot client.
• Record and reverse changes across the app.
• Quickly implement undo/redo functionality.

Dan Abramov, Redux's designer, has meticulously written documentation and created
video tutorials for understanding basic and advanced Redux. Their Redux learning
resources are invaluable.

COMBINING VIEW AND STATE

Although using Redux with React is not required, it is strongly suggested because the two
libraries complement each other and work very well together. Both React and Redux share
some concepts and characteristics, including the following:

• The Functional Composition Paradigm states that React is responsible for composing
views, which are themselves pure functions, whereas Redux is accountable for
collecting pure reducers, which are themselves functions. When the same set of inputs
is used, it is possible to predict the output.

• It Is Not Hard To Reason About — This phrase may be familiar to us, but do we
clearly understand what it denotes? We take it to mean we have control and
comprehension over our code. Our code performs in the ways that we anticipate it
will, and when there are issues, we can locate them with relative ease. According to
our observations, React and Redux make the debugging process more manageable.
Because the data flow is unidirectional, it is much simpler to track the flow of data
(server answers, user input events), and it is also much simpler to establish in which
layer the issue originates.

• Structure Comprised of Several Layers Each app or Flux architecture layer performs
a single, unambiguous function and is assigned specific duties. Writing tests for pure
functions is a pretty straightforward process.

DEVELOPMENT EXPERIENCE

A significant amount of work has been put into developing tools, such as Redux DevTools,
that will assist in inspecting and debugging the application while it is being designed
(Gutlapalli, 2016a). Our program may have to handle asynchronous calls, such as queries
sent to a remote API. Redux-thunk and redux-saga are two programs that were developed
specifically to address these issues. Understanding them requires familiarity with functional
programming and generators, which could add extra time to the process (Thaduri et al.,
2016). Our recommendation is to deal with it only when it's essential. React-redux is the
official React binding for Redux, and it is a pretty straightforward concept to grasp.

CODING WITH STYLE — CSS MODULES

CSS rules describe HTML element appearance. Writing decent CSS is hard. Learning to
design sustainable and scalable CSS takes years of practice and the frustration of shooting
oneself in the foot. With its global namespace, CSS is meant for web documents, not
components-based web programs (Gutlapalli, 2016b). Thus, experienced front-end

Chen et al.: Front-End Development in React: An Overview (117-126)

Page 122 Engineering International, Volume 7, No. 2 (2019)

developers have developed methods like SMACSS, BEM, SUIT CSS, etc., to help users write
organized CSS for complex applications.

CSS approaches encapsulate styles artificially via conventions and rules. They break when
developers don't comply. As we may have noticed, the front-end ecosystem is full of tools,
and some of them solve some of the challenges with creating CSS at scale. "At scale" means
several developers touch the same stylesheets on a significant project. There is no
community-agreed technique for producing CSS in JS, but we hope a winner, like Redux,
will emerge among Flux implementations. For now, we trust CSS Modules. CSS modules
solve the global namespace problem in CSS by letting us write local, component-
encapsulated styles. This functionality is tool-based. Large teams can design modular,
reusable CSS without conflicting with other program elements with CSS modules. After all,
CSS modules are still compiled into globally namespaced CSS that browsers recognize; it's
essential to comprehend raw CSS (Thodupunori & Gutlapalli, 2018). Codecademy's HTML
& CSS course is suitable for CSS beginners. Next, learn about the Sass preprocessor, which
improves CSS syntax and encourages style reuse. Check out CSS modules and CSS
techniques.

TYPES — FLOW

Static typing improves app writing. They can spot typical code mistakes early. Types
document and promote code readability. As codebases increase, types become more
important because they boost refactoring confidence. When new team members know what
values each object stores and what parameters each function expects and returns, it's easier to
onboard them. Adding types to our code increases verbosity and syntax learning. However,
this learning cost is upfront and amortized. Types have more pros than cons in complex
projects where code maintainability counts and developers shift over time. We fixed a bug in
a code base we hadn't touched in months. Because of the types, I could refresh my coding
knowledge and feel confident in my patch. The two most significant competitors for adding
static types to JavaScript are Facebook's Flow and Microsoft's TypeScript. There is no apparent
winner in the battle. For now, we're utilizing flow. Flow offers a smaller learning curve than
TypeScript and requires less work migrating code. Being designed by Facebook, Flow
integrates with React better out of the box. Flow author James Kyle compares TypeScript to
Flow. Due to their identical syntax and semantics, moving from Flow to TypeScript is easy,
and we will reevaluate the issue later. Using one is better than none.

BUILD SYSTEM — WEBPACK

Because configuring webpack can be a time-consuming process that may be off-putting to
developers who are already overwhelmed by the onslaught of new information they need to
learn for front-end development so that this section will be kept to a minimum, Webpack is a
module bundler, which, in a nutshell, means that it compiles a front-end project and all of its
dependencies into a final bundle that can then be served to customers. In most cases, the
webpack configuration will already be set up for the project, and developers will seldom need
to adjust it. In the long term, having a working knowledge of webpack will be beneficial.
Webpack is responsible for the capabilities allowing hot reloading and CSS modules to existing.
Learning webpack with the webpack tour provided by SurviveJS has proven to be our most
helpful resource. It is a valuable supplement to the official documentation, and we
recommend that we follow the tour first and then go to the documentation later whenever
the need for extra customization arises.

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 123

PACKAGE MANAGEMENT — YARN

If we look inside our node_modules directory, we will be astounded by the sheer volume
of guides. Each Babel plugin and Lodash function is considered a separate package. When
we have more than one project going at once, these packages will be repeated for each one
and will be identical. When we start a new project and execute the npm install, these
packages will be downloaded repeatedly, even though they are already present on our
machine in one of our earlier projects (Mandapuram & Hosen, 2018). In addition, there was
the issue of non-determinism in the packages that were installed via npm install. When the
CI server pulls in minor updates to some packages that contain breaking changes, it causes
some of our CI builds to fail. This happens at the moment in time when the CI server is
installing the dependencies. This would not have occurred if library authors had honored
the server, and engineers would not have assumed that API contracts would be respected
at all times if they had not made that assumption.

These issues can be resolved by using yarn. The case of non-deterministic installed packages
is handled by a file called yarn.lock, which assures that each installation results in the same
file structure in node_modules across all computers. This file is located in the yarn directory.
Yarn uses a global cache directory that is stored locally on our machine; this means that
already downloaded packages do not need to be downloaded anymore. This also makes it
possible to install dependencies without an internet connection! These are the Yarn
commands that are used the most frequently. Using the npm versions rather than the
corresponding yarn commands is OK because most other yarn commands are very similar
to their npm counterparts. The yarn upgrade-interactive command is one of our favorites
because it makes updating dependencies a breeze, which is especially useful considering
that the average modern JavaScript project has many dependencies.

LEVEL UP REACT CONDITIONALS

Any application that uses React must have solid conditionals as one of its core components.
Our apps use conditionals to show or conceal certain features and components. In a nutshell,
if we want to be a successful React developers, we need to be familiar with designing
effective conditionals. Let's go through all of the primary patterns we need to be familiar
with to design clear and concise conditionals and the anti-patterns we should try to avoid.

Use if-statements primarily. No need for else or else-if.

Let's begin with the most fundamental form of conditional that React has to offer. If we have
data, we intend to show it. In such a case, we have nothing else to display. Consider for a
moment that we are retrieving an array of post data from an API. During the time that it is
retrieving the data, the value of posts is undefined. We may use a straightforward if-
statement to test whether or not that value is present. The fact that we are leaving earlier is
the key to the success of this pattern. If the requirement is met (if the variable! posts has a
boolean value of true), our component will not display anything because we will have
returned null if statements are helpful in situations where there are many conditions to be
checked for. For instance, if we want to check for loading and error conditions before
displaying our data, we could do the following:

We may recycle the if-statement and do not need to write if-else or if-else-if. This allows us
to reduce the code we need to write while maintaining its readability.

Use the ternary operator to write conditionals in JSX

Chen et al.: Front-End Development in React: An Overview (117-126)

Page 124 Engineering International, Volume 7, No. 2 (2019)

When we wish to end the program early and display either nothing or a completely different
component, if-statements are a terrific tool to use. But what if we don't want to place a
conditional in a different file from our returning JSX and instead want to write it
immediately within it? Expressions, not statements, should be used within our JSX code
while working with React since a word is "something that resolves to a value." Because of
this, we are required to use only ternaries when writing conditionals in our JSX rather than
if statements (Mandapuram et al., 2018). For instance, if we wanted to display one nested
component on a screen that was the size of a mobile device and another on a larger screen,
the ideal solution would be to use a ternary:

When it comes to utilizing ternaries, most developers believe that this style is the only one
they can use. We can leave some of these ternaries directly in the JSX supplied, saving space
in our component tree. Remember that we can assign the result of a ternary to a variable,
which we can then utilize in any way we see fit because ternaries resolve to a value. This is
because ternaries are values.

No other condition? Use the && (and) operator

We will likely need to utilize a ternary in our JSX code frequently, but we will eventually
conclude that we do not want to display anything if the condition is not satisfied. The
following is an example of what this ternary would look like condition. Component />: not
set to any value.

Use the and or operator if we don't have any other conditions to check:

Switch statements for multiple conditions

What if we find ourselves in a circumstance in which we are confronted with more than
simply one or two distinct conditions? We can write more than one if statement, but all of
these if accounts, as we have seen in a previous section, go above the JSX that is returned.
An excessive number of if-statements can prevent our components from becoming cluttered
(Deming et al., 2018). How can we improve the readability of our code? We can frequently
extract many conditions into a single component comprising a switch statement. For
instance, we have a Menu component that allows us to toggle and display a variety of tabs,
and we have this capability.

As we can see below, we have tabs that can display data regarding users, chat, and rooms:

Because we are utilizing a separate MenuItem component in conjunction with a switch
statement, the conditional logic does not clutter up our parent Menu component, and it is
simple for us to determine which piece will be displayed based on the current state of the
menu.

Want conditionals as components? Try JSX Control Statements

The capability to use plain JavaScript within our React components is quite handy. On the
other hand, check out the JSX control statements provided by the React framework if we
want conditionals that are even more declarative and straightforward. By using the
following command, we'll be able to incorporate it into our React projects (Dekkati &
Thaduri, 2017). Additionally, we can include it in the following format in. babel file:

This plugin for Babel enables us to use React components within our JSX code, making it
much simpler for readers to comprehend the conditionals we write.

Engineering International, Volume 7, No. 2 (2019) ISSN 2409-3629

Asian Business Consortium | EI Page 125

Examining a sample is the most effective method for gaining an understanding of how such
a library may be put to use. Let's go back through some of our older examples and rework
them with the help of JSX control statements:

No if or ternary statement is anywhere in sight, and our component structure is relatively
easy to follow.

We should experiment with JSX control statements in the next React project to determine
whether we need a library such as this one.

CONCLUSION

By incorporating some fundamental JavaScript functionalities, the JS framework enables the
construction of aesthetically pleasing user interfaces. As a result of the fact that it supplies
us with a markup syntax that is highly similar to HTML, it is simple to use and put into
practice. The Virtual DOM is the most critical feature we offer, as it eliminates the need to
reload a page and significantly boosts the application's overall performance. Because our
application is built on JavaScript, we also have access to a package manager called NPM.
This gives us an easier way to install external dependencies and simplifies managing these
packages. The lifecycle methods that React offers allow us to modify the lifecycle of the class
components we use. When it comes to the construction of applications or user interfaces,
many developers are turning to one of the most popular frameworks: React. As a result,
there is little doubt that, in the not-too-distant future, there will be an increase in demand
for this framework and the features it offers. The fact that React is a library that aids
businesses in achieving their objectives strengthens the company's position in the market. It
ensures its continued relevance in the years to come.

REFERENCE

Capała, Ł., & Skublewska-Paszkowska, M. (2018). Comparison of AngularJS and React.js frameworks
based on a web application. Journal of Computer Sciences Institute, 6, 82–86.
http://dx.doi.org/10.35784/jcsi.645

Ciliberti, J. (2017). Creating Modern User Experiences Using React.js and ASP.NET Core. In ASP.NET
Core Recipes, 361–409. http://dx.doi.org/10.1007/978-1-4842-0427-6_11

Dekkati, S., & Thaduri, U. R. (2017). Innovative Method for the Prediction of Software Defects Based
on Class Imbalance Datasets. Technology & Management Review, 2, 1–5.
https://upright.pub/index.php/tmr/article/view/78

Deming, C., Dekkati, S., & Desamsetti, H. (2018). Exploratory Data Analysis and Visualization for
Business Analytics. Asian Journal of Applied Science and Engineering, 7(1), 93–100.
https://doi.org/10.18034/ajase.v7i1.53

Desamsetti, H. (2016). Issues with the Cloud Computing Technology. International Research Journal of
Engineering and Technology (IRJET), 3(5), 321-323.

Desamsetti, H., & Mandapuram, M. (2017). A Review of Meta-Model Designed for the Model-Based
Testing Technique. Engineering International, 5(2), 107–110.
https://doi.org/10.18034/ei.v5i2.661

Gutlapalli, S. S. (2016a). An Examination of Nanotechnology’s Role as an Integral Part of
Electronics. ABC Research Alert, 4(3), 21–27. https://doi.org/10.18034/ra.v4i3.651

Gutlapalli, S. S. (2016b). Commercial Applications of Blockchain and Distributed Ledger
Technology. Engineering International, 4(2), 89–94. https://doi.org/10.18034/ei.v4i2.653

http://dx.doi.org/10.35784/jcsi.645
http://dx.doi.org/10.1007/978-1-4842-0427-6_11
https://upright.pub/index.php/tmr/article/view/78
https://doi.org/10.18034/ajase.v7i1.53
https://doi.org/10.18034/ei.v5i2.661
https://doi.org/10.18034/ra.v4i3.651
https://doi.org/10.18034/ei.v4i2.653

Chen et al.: Front-End Development in React: An Overview (117-126)

Page 126 Engineering International, Volume 7, No. 2 (2019)

Gutlapalli, S. S. (2017a). Analysis of Multimodal Data Using Deep Learning and Machine
Learning. Asian Journal of Humanity, Art and Literature, 4(2), 171–176.
https://doi.org/10.18034/ajhal.v4i2.658

Gutlapalli, S. S. (2017b). The Role of Deep Learning in the Fourth Industrial Revolution: A Digital
Transformation Approach. Asian Accounting and Auditing Advancement, 8(1), 52–56. Retrieved
from https://4ajournal.com/article/view/77

Gutlapalli, S. S. (2017c). An Early Cautionary Scan of the Security Risks of the Internet of Things. Asian
Journal of Applied Science and Engineering, 6, 163–168. Retrieved from
https://ajase.net/article/view/14

Madaj, T. (2018). Výkonnostní testy pro chytré TV, set-top boxy a herní konzole. Master's thesis, Vysoké
učení technické v Brně. Fakulta informačních technologií. http://www.nusl.cz/ntk/nusl-386024

Mandapuram, M. (2016). Applications of Blockchain and Distributed Ledger Technology (DLT) in
Commercial Settings. Asian Accounting and Auditing Advancement, 7(1), 50–57. Retrieved from
https://4ajournal.com/article/view/76

Mandapuram, M. (2017a). Application of Artificial Intelligence in Contemporary Business: An
Analysis for Content Management System Optimization. Asian Business Review, 7(3), 117–122.
https://doi.org/10.18034/abr.v7i3.650

Mandapuram, M. (2017b). Security Risk Analysis of the Internet of Things: An Early Cautionary
Scan. ABC Research Alert, 5(3), 49–55. https://doi.org/10.18034/ra.v5i3.650

Mandapuram, M., & Hosen, M. F. (2018). The Object-Oriented Database Management System versus
the Relational Database Management System: A Comparison. Global Disclosure of Economics and
Business, 7(2), 89–96. https://doi.org/10.18034/gdeb.v7i2.657

Mandapuram, M., Gutlapalli, S. S., Bodepudi, A., & Reddy, M. (2018). Investigating the Prospects of
Generative Artificial Intelligence. Asian Journal of Humanity, Art and Literature, 5(2), 167–174.
https://doi.org/10.18034/ajhal.v5i2.659

Naiki, S., Kohana, M., Okamoto, S., and Kamada, M. (2018). A Graphical Front-End Interface for
React.js. In Advances in Network-Based Information Systems, 887–896. Cham: Springer
International Publishing. http://dx.doi.org/10.1007/978-3-319-98530-5_79

Thaduri, U. R., Ballamudi, V. K. R., Dekkati, S., & Mandapuram, M. (2016). Making the Cloud Adoption
Decisions: Gaining Advantages from Taking an Integrated Approach. International Journal of
Reciprocal Symmetry and Theoretical Physics, 3, 11–16.
https://upright.pub/index.php/ijrstp/article/view/77

Thodupunori, S. R., & Gutlapalli, S. S. (2018). Overview of LeOra Software: A Statistical Tool for
Decision Makers. Technology & Management Review, 3(1), 7–11.

--0--

Archive Link:

https://abc.us.org/ojs/index.php/ei/issue/archive

https://doi.org/10.18034/ajhal.v4i2.658
https://4ajournal.com/article/view/77
https://ajase.net/article/view/14
http://www.nusl.cz/ntk/nusl-386024
https://4ajournal.com/article/view/76
https://doi.org/10.18034/abr.v7i3.650
https://doi.org/10.18034/ra.v5i3.650
https://doi.org/10.18034/gdeb.v7i2.657
https://doi.org/10.18034/ajhal.v5i2.659
http://dx.doi.org/10.1007/978-3-319-98530-5_79
https://upright.pub/index.php/ijrstp/article/view/77
https://abc.us.org/ojs/index.php/ei/issue/archive

