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ABSTRACT 

In theory, recurrent networks (RN) can leverage their feedback connections to 
store activations as representations of recent input events. The most 
extensively used methods for learning what to put in short-term memory, on 
the other hand, take far too long to be practicable or do not work at all, 
especially when the time lags between inputs and instructor signals are long. 
They do not provide significant practical advantages over, the backdrop in 
feedforward networks with limited time windows, despite being theoretically 
fascinating. The goal of this article is to have a succinct overview of this 
rapidly evolving topic, with a focus on recent advancements. Also, we 
examine the asymptotic behavior of error gradients as a function of time lags 
to provide a hypothetical treatment of this topic. The methodology adopted 
in the study was to review some scholarly research papers on the subject 
matter to address the difficulty of learning long-term dependencies with 
gradient flow in recurrent nets. RNNs are the most general and powerful 
sequence learning algorithm currently available. Unlike Hidden Markov 
Models (HMMs), which have proven to be the most successful technique in a 
variety of sequence processing applications, they are not limited to discrete 
internal states and can represent continuous, dispersed sequences. As a result, 
they can address problems that no other method can.    Conventional RNNs, 
on the other hand, are difficult to train due to the problem of vanishing 
gradients. 
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INTRODUCTION 

In theory, recurrent networks (RN) can leverage their better robustness to keep models of 
current contribution events in the guise of detection or activations. The most extensively 
used methods for learning what to put in short-term retention, on the other hand, take far 
too long to be practicable or do not work at all, notably when the latency lags among inputs 
and instructor signals are long. They do not provide significant practical advantages over 
effective tools in feedback systems with short time frames, despite being conceptually 
intriguing. “Back-Propagation Through Time" (BPTT) (Rumelhart, Hinton, and William, 
1986; Schmidhuber, 1992; Bynagari, 2017, Figure 1) or “Real-Time Recurrent Learning" 
(RTRL) (Robinson and Fallside, 1987; Ganapathy, 2016) error signals owing back through 
time" appear to either (1) blow up or (2) fade away with traditional methods based on the 
comparison of the comprehensive gradient: the time-based evolution of the backpropagated 
error exponentially depends on the size of the weights (Bengio, Simard, and Frasconi, 1994; 
Bynagari, 2019). In scenario (1), fluctuating loads may result, whereas in case (2), learning 
to connect long temporal delays takes a while or may not operate at all. 

 

Figure 1: Back-Propagation through Time algorithm 

Objective of the study 

Because of several excellent breakthroughs that these algorithms have gained in the 
previous decade, the areas of Deep Learning (DL) and Neural Networks (NN) are 
generating a lot of buzzes. The goal of this article is to have a succinct overview of this 
rapidly evolving topic, with a focus on recent advancements (Bynagari, 2018). Also, we 
examine the asymptotic behavior of error gradients as a function of time lags to provide a 
hypothetical treatment of this topic.  

This paper is divided into 5 sections, Section 1 is the introduction and objectives of the study. 
In Section 2 (review of related), we look at standard RNNs and use the approach first 
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proposed in Bynagari (2019) report to obtain the primary result. Also, in Section 2, we look 
at adaptive dynamical systems in general, which includes, in addition to standard RNNs, 
alternative recurrent designs based on different linkages and activation function choices 
(e.g., RBF or second-order connections). The analysis reported by (Bengio, Simard, and 
Frasconi, 1994) will be used to describe the two detrimental conditions that essentially arise; 
either the method is incompetent to strongly store past data about its feedbacks, or gradients 
fading exponentially. Section 3 (Methodology) will be described in this section. Lastly, we 
briefly explore other optimization strategies and designs that have been proposed to 
improve learning in the face of long-term dependencies in Section 4 (Results and 
discussion), and the last section is Section 5 (conclusion and recommendation). 

REVIEW OF RELATED LITERATURE 

Exponential error decay 

Gradients of the error function 

The outcomes attempted to prove to stand irrespective of the specific form or type of cost 
function applied (as long as it is nonstop in the throughput) and irrespective of the 
particular classifier which is used to analyze the gradient. Under gradients of the error 
function, explanation on how the typical “Back-Propagation through Time" classifier 
calculates gradients in a few words (Williams and Zipser, 1992; Vadlamudi, 2019; Bynagari 
& Fadziso, 2018).  

The error at the time, t is signified by E(T) considering only the error at the time, t, 

throughput unit k’s error signal is 𝛿𝑘  (𝑡) =  
𝜕𝐸 (𝑡)

𝜕𝑛𝑒𝑡𝑘 (𝑡)
 and some non-throughput unit j’s back-

propagated error signal at time ᴦ < t is   𝛿𝑗  (𝜏) =  𝑓𝑗
𝑡 (𝑛𝑒𝑡𝑗(𝜏)) (∑ 𝑤𝑖𝑗  𝛿𝑖 𝑖 (𝜏 + 1)), where 

𝑛𝑒𝑡𝑖  (𝜏) =  ∑ 𝑤𝑖𝑗𝑎𝑗(𝜏 − 1)𝑖   is the unit i’s current net feedback, 𝑎𝑖 (𝜏) =  𝑓𝑖(𝑛𝑒𝑡𝑖  (𝜏))  is the 

initiation or activation of non-feedback unit i with differentiable transmission function 𝑓𝑖 
and 𝑤𝑖𝑗 is the load on the link from j unit to i. The equivalent input to 𝑤𝑖𝑗′𝑠 entire load update 

is 𝜂𝛿𝑗  (𝜏)𝑎𝑖(𝜏 − 1), where 𝜂 signifies the learning proportion is, and 1 denotes a random unit 

linked to unit j. 

Error Path integral 

Consider a fully connected network with non-feedback unit directories ranging from 1 to n. 
concentrating on the local error drift from throughput unit k to random unit v (we'll show 
later that the analysis extends to global error ow as well). The error at k at time step t is 
distributed “back in time” for t - s time phases to a random unit v at time s < t (Bynagari, 
2019). The following fact is used to scale the error:  

𝜕𝛿𝑣  (𝑠)

𝜕𝛿𝑘  (𝑡)
=  {

𝑓𝑣
𝑡  (𝑛𝑒𝑡𝑣  (𝑡 − 1) 𝑤𝑘𝑣                                 𝑡 − 𝑠 = 1

𝑓𝑣
𝑡  (𝑛𝑒𝑡𝑣  (𝑠)) (∑

𝜕𝛿𝑗  (𝑠 + 1)

𝜕𝛿𝑘  (𝑡)
 𝑤𝑘𝑣)  𝑡 − 𝑠 > 1

𝑛

𝑖=1

 

To answer the following problem, we shall unroll it across time and expand it (as completed 
for example in developing “Back-Propagation through Time"). In specific, let l be the index 
of a generic non-feedback unit in the network replica at the time for s < ᴦ < t, additionally, 
𝑙𝑠 = 𝑣 and 𝑙𝑡 = 𝑘 We get the following results:  
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𝜕𝛿𝑣  (𝑠)

𝜕𝛿𝑘  (𝑡)
=  ∑ … .

𝑛

𝑙𝑖−1=1

 ∑ (𝑤𝑙𝑡𝑙𝑡 ( ∐ 𝑓𝑙𝜏

𝐼  (𝑛𝑒𝑡𝑙𝜏 
(𝜏)) 

𝑠+1

𝜏=𝑡−1

𝑛

𝑙𝑖−1=1

𝑤𝑙𝜏𝑙𝜏−1 ) 𝑓𝑙𝑠

𝐼  (𝑛𝑒𝑡𝑙𝑠 
(𝑠)) 

Intuitive description of the above equation,  

If |𝑓𝑙𝜏

𝐼  (𝑛𝑒𝑡𝑙𝜏 
(𝜏)) 𝑤𝑙𝜏𝑙𝜏−1 ) | > 1.0 for all 𝜏 for all the leading product upsurges exponentially 

with t – s - 1. Which is, the error blows up, and contradictory error indications arriving at v 
unit can tip to fluctuating loads and unbalanced learning (for error blow-ups or 
divergences) (Pineda, 1988, Baldi and Pineda, 1991, Doya, 1992).  

However, if  |𝑓𝑙𝜏

𝐼  (𝑛𝑒𝑡𝑙𝜏 
(𝜏)) 𝑤𝑙𝜏𝑙𝜏−1

)| <  1.0  < 1:0 for all 𝜏, then the biggest product drops 

exponentially with t - s - 1. This is, the error disappears, and not anything can be learned in 
a suitable time. If 𝑓𝑙 is the “logistic sigmoid function”, then the utmost value of 𝑓𝑙𝜏

𝐼  is constant 

and is greater than zero, then the magnitude of the gradient |𝑓𝑙𝜏

𝐼  (𝑛𝑒𝑡𝑙𝜏 
(𝜏)) 𝑤𝑙𝜏𝑙𝜏−1  )| takes 

on utmost values where 𝑤𝑙𝜏𝑙𝜏−1
=  

1

𝑎𝑙𝜏−1

coth(
1

2
𝑛𝑒𝑡𝑙𝜏

), the magnitude of the derivative 

approaches zero for |𝑤𝑙𝜏𝑙𝜏−1
|  →  ∞ and  it less than 1.0 for |𝑤𝑙𝜏𝑙𝜏−1

| < 4.0, for instance, if the 

absolute utmost load value wmax is less than 4.0). Henceforth with “conventional logistic 
sigmoid transfer functions” the error flow inclines to disappear as long as the loads have 
unconditional values less than 4.0, particularly at the start of the working out phase. The 

bigger initial loads do not support in overall as shown above for |𝑤𝑙𝜏𝑙𝜏−1
|  →  ∞, the 

appropriate derivative approaches zero "more rapidly" than the complete load can 
propagate (also, some loads may have to adjust their signs by intersection zero). Growing 
the learning proportion does not support either - the ratio of long-term error flow to short-
term error flow leftovers untouched (Ganapathy, 2019a). “Back-Propagation through Time" 
is excessively prompted by current interruptions. It is worth noting that the summation term 
in the considered equation may have diverse signs as the number of units n upturns and 
does not always lead to an increase in error flow (Ganapathy, 2019b). 

Weak upper limit for scaling factor 

The succeeding, marginally extended disappearing error assessment also takes n, the 
amount of units, into consideration. For t – s > 1, this equation: 

𝜕𝛿𝑣  (𝑠)

𝜕𝛿𝑘  (𝑡)
=  ∑ … .

𝑛

𝑙𝑖−1=1

 ∑ (𝑤𝑙𝑡𝑙𝑡 ( ∐ 𝑓𝑙𝜏

𝐼  (𝑛𝑒𝑡𝑙𝜏 
(𝜏)) 

𝑠+1

𝜏=𝑡−1

𝑛

𝑙𝑖−1=1

𝑤𝑙𝜏𝑙𝜏−1 ) 𝑓𝑙𝑠

𝐼  (𝑛𝑒𝑡𝑙𝑠 
(𝑠)) 

Can be modified as: 

( 𝑊𝑘
𝑇).𝑇  𝐹𝑙(𝑡 − 1)( ∏  𝑊   𝐹𝑙  (𝜏)) 

𝑠+1

𝜏=𝑡−2

𝑊𝑣 𝑓𝑣
𝐼 (𝑛𝑒𝑡𝑣(𝑠)) 

Where the load matrix W is distinct by ⌊𝑊⌋.𝑖𝑗 ∶=  𝑤𝑖𝑗 , v’s outbound load vector 𝑊𝑣 is distinct 

by ⌊𝑊𝑣⌋.𝑖 ∶=  ⌊𝑊⌋.𝑖𝑣 =  𝑤𝑖𝑣 , k’s inbound load vector 𝑊𝑘
𝑇is distinct by ⌊𝑊𝑘

𝑇⌋.𝑖 :=  ⌊𝑊⌋.𝑘𝑖 =  𝑤𝑖𝑣 , 
and 𝐹𝑙 (𝑡) is the diagonal matrix of 1st order derivatives distinct as: ⌊𝐹𝑙 (𝑡)⌋.𝑖𝑗 ≔ 0 𝑖𝑓 𝑖 ≠

𝑗, 𝑎𝑛𝑑 ⌊𝐹𝑙 (𝑡)⌋.𝑖𝑗 ≔  𝑓𝑖
𝑙(𝑛𝑒𝑡𝑖 (𝑡)) if not. Here T is the inversion operator, ⌊𝐴⌋.𝑖𝑗 are the 

component in the i-th column and j-th row of matrix A, and ⌊𝑥⌋.𝑖 is the i-th element of vector 
x. 

Using a matrix model ‖. ‖.𝐴 compatible with vector model ‖. ‖.𝑥 to distinct: 
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Where ℯ𝑘 is the vector unit is whose elements are zero except the k-th element, which is 1. 
Note that this is a weak, risky case upper limit – it will be stretched only if all ‖𝐹𝑙  (𝜏)‖.𝐴 take 
greatest values, and if the inputs of all paths across which error flow back from unit k to 
unit v have the same sign. Big ‖𝑊‖.𝐴 therefore, typically outcomes in small values of 
‖𝐹𝑙  (𝜏)‖.𝐴, as confirmed by experiments (Bynagari, 2019). 
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Dilemma: Circumventing gradient decay averts long-term latching 

The analysis of the problem of gradient decays is generalized to parameterized dynamical 
systems in Bengio et al. (1994), hence including second-order and other recurrent 
architectures. The fundamental theorem illustrates that obtaining gradient decay requires a 
sufficient condition, which is also a need for the system to reliably maintain discrete state 
data over time. To put it another way, when the loads and state trajectory are set up in such 
a way that the difficulty of gradient decay is obtained when a network may "latch" on data 
in its hidden units (i.e., depict long-term cravings). It's difficult to learn long-term 
dependencies when long-term gradients fade exponentially since this overall gradient is the 
sum of long-term and short-term influences, and the short-term influences entirely 
dominate the inclination (Vadlamudi, 2016).  
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These findings were based on a dissection of the state-space of the hidden layer into two 
types of territories: one in which gradients erode and one in which strong information 
latching is impossible. Let y(t) be the n-dimensional state vector at time t (for example, the 
vector [net1(t),.., net (t)] when in view of a normal 1st-order recurrent network) and y(t) = 
M(y(t - 1)) represent the map from the state at time t - 1 to t for the independent deprived of 
a controller and dynamical structure (inputs) The disintegration described above is stated 
in terms of the ⌊𝑀𝑙⌋ > 1  condition (no strong latching viable) or ⌊𝑀𝑙⌋ < 1 (gradient 
disintegration), where ⌊𝑀𝑙⌋ is the model of the Jacobian (matrix of fractional results) of the 
map M. The focus of the investigation is on the lakes of attraction of M attractors in the 
domain of y(t) (or multiple within that space). The analysis focuses on this so exponential 

attractors, which are locally robust (but do not have to be fixed spots) and have 𝑀𝑙  
eigenvalues are greater than zero but less than 1 in absolute value. If a state (or a task of it) 
relics in a certain range, even in the presence of a given region of space (vs another region). 
When there are perturbations (such as noise in the inputs), it is likely to stock at least some 
of the data at least one byte of data for an undetermined amount of time (Bengio et al. 1994). 

  

Figure 2: Robust latching (kick the formal out of a bowl of attraction) 

It has been demonstrated that in regions where ⌊𝑀𝑙⌋ > 1, arbitrarily tiny disturbances (for 
instance, due to inputs) can eventually kick the formal out of a bowl of attraction (Ortega 
and Rheinboldt, 1970) (as shown in the sample path in Figure 2). There is an equal of 
perturbation (liable on) lesser which the state will continue in the bowl of attraction (and) 
where ⌊𝑀𝑙⌋ <  𝜆 < 1 there is a smooth of perturbation (liable on 𝜆) below which the state 
will persist in the bowl of attraction as well as progressively tends to a definite volume about 
the attractor (see Figure 3). Due to this condition “information latching” subsequently it will 
permits to maintenance of separate data for the random intervals in the state variable y(t). 

 

Figure 3: Robust latching showing persistent in the bowl of attraction as well as 
progressively tends to a definite volume about the attractor 
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Inappropriately, in the areas where  ⌊𝑀𝑙⌋ < 1 one can latch data and also express that 
gradient dwindling. The partial derivative of y(t) with respect to y(s) with s < t is merely the 
products of the map derivatives among s and t:  

𝜕𝑦 (𝑡)

𝜕𝑦 (𝑠)
=  

𝜕𝑦(𝑡)  𝜕𝑦 (𝑡 − 1)

𝜕𝑦 (𝑡 − 1)𝜕𝑦 (𝑡 − 2)
… 

𝜕𝑦 (𝑠 + 1)

𝜕𝑦 (𝑠)
 

When the model of respective factors on the RHS is < 1, the LHS congregates exponentially 
firm to zero as t – s rises. The consequence of this gradients decay can be expressed more 
explicitly as shown below: 

𝜕𝐸 (𝑡)

𝜕𝑊
=  ∑

𝜕𝐸(𝑡)𝜕𝑦(𝜏)

𝜕𝑦(𝜏)𝜕𝑊
𝜏≤𝑡

=  ∑
𝜕𝐸(𝑡)𝜕𝑦(𝑡)𝜕𝑦(𝜏)

𝜕𝑦(𝑡)𝜕𝑦(𝜏)𝜕𝑊
𝜏≤𝑡

 

Therefore, for a span of the amount with 𝜏 ≪ 𝑡𝑖 , that give rise  

|
𝜕𝐸(𝑡)𝜕𝑦(𝜏)

𝜕𝑦(𝜏)𝜕𝑊
| → 0 

In comparison to terms that are close to t, this term tends to turn comparatively small. This 
suggests that, notwithstanding the possibility of a variation in W, would allow y(𝜏 ) to jump 
to another (improved) attraction sink, the gradient That potential is not reflected in the cost 
with respect to W. The explanation is that a small modification in W would have a big impact 
in the not-too-distant past (𝜏 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑡) (Bengio et al. 1994). 

METHODS 

To achieve the objective of this study, we attempt to review some scholarly research papers 
on the subject matter to address the difficulty of learning long-term dependencies with 
gradient flow in recurrent nets. The analysis reported by (Bengio, Simard, and Frasconi, 1994) 
will take the central point of discussion and other related articles that will be of help to this 
discussion will be used to describe the two detrimental conditions that essentially arise; either 
the method is incompetent to strongly store past data about its feedbacks, or gradients fading 
exponentially. Also, we will briefly explore other optimization strategies and designs that 
have been proposed to improve learning in the face of long-term dependencies. 

RESULTS AND DISCUSSION 

Remedies 

Gradient descent as a search strategy for finding peak loads in a recurrent neural network 
(RNN) has a fundamental drawback, as shown by the theoretical experiments above. To 
deal with the problem of long-term dependencies, several solutions have been made, some 
of which aim to tackle the optimization difficulty using alternate techniques. Others are 
working on alternate structures and search techniques (Ganapathy & Neogy, 2017). We will 
give you a quick rundown of these recommendations below. 

Time Constants 

Mozer (1992) employs time constants manipulating modifications in unit activations to deal 
with long-time lags (“deVries and Principe's related technique” (de Vries and Principe, 
1991). maybe considered as mixing of “time-delay neural networks” (TDNN) (Lang, Waibel, 
and Hinton, 1990) and the passage of time variables). Therefore, for long time lapses, 



Engineering International, Volume 8, No. 2 (2020)                                                                                                                                         ISSN 2409-3629 

 

Asian Business Consortium | EI                                                                                                                                                        Page 135 

 

external time constants are required fine turning (Mozer, 1992). The alternate approach 
proposed by Sun et al. (1993) adds the old activation and the (scaled) current to the activity 
of a recurrent unit input (net). The net input, on the other hand, tends to disturb the stored 
data, making long-term storage impossible. Lin et al. (1996) also offer NARX networks, 
which are time-delay network versions. Gradient ow can be enhanced in this design because 
embedded memory effectively introduces "shortcuts" in error propagation, a journey 
through time The same concept can be used in different types of architecture. Rather than 
using a single delay, many delays are used in the connections between hidden state units 
compared to output units (Lin et al., 1998). Nevertheless, these structural designs cannot 
resolve the general difficulty for the reason that they can only lengthen the interval of the 
temporal dependencies that can be learned by a continuous multiplicative factor. In 
conclusion, El Hihi and Bengio (1996) looked at recurrent neural networks that were 
arranged hierarchically. In view of varying levels of time coefficients or delays. 

Ring’s Technique 

Ring also suggests an approach for bridging long-time gaps in his paper (Ring, 1993). He 
adds a higher-order unit manipulating appropriate links at whatever time a unit in his 
network receives contradictory error signals, that is, certain error signals advocate 
increasing the unit's activity while others suggest decreasing it. Even though his method 
can be exceedingly fast at times, bridging a hundred-step time lapse may require the adding 
of hundred units. Ring's net also doesn't put on to lag times that aren't visible. 

Searching deprived of gradients 

The large-scale optimization strategy that directs the search for a load solution is directly 
tied to the difficulty of learning long-term connections (Neogy & Bynagari, 2018). Other 
types of weight space searches, in which the algorithms for producing another candidate 
weight solution are not dependent on uninterrupted gradients, are one way to circumvent 
the difficulty (Ganapathy, 2018). The proposed algorithm, multi-grid random search, and 
discrete regression coefficient are among the strategies explored by Bengio et al. (1994) 
Angeline et al. (1994) suggest a genetic method that eliminates gradient computing as well. 

The most basic type of search without gradient, on the other hand, just randomizes all 
network weights until the resulting net properly classifies all training sequences. In reality, 
simple weight guessing answers some common benchmarks mentioned in prior work 
quicker than the recurrent net techniques provided therein, as stated in simple weight 
guessing (Bynagari & Amin, 2019). This isn't to say that guessing weights is a good method. 
It just means that the issues are straightforward. More realistic tasks necessitate a large 
number of free parameters (e.g., input loads) or a high level of weight precision (for 
example; for continuous-valued factors), making guessing impossible. At the moment, it's 
unclear what's going on. In the case of more realistic problems, it is currently unknown to 
what extent more advanced gradient-less algorithms can outperform guessing. 

Probabilistic aim propagation 

For propagating aims, Bengio and Frasconi (1994) suggest a probabilistic technique. With n 
so-called "state networks," their device can be in one of only n state variables at any given 
time. The parameters are tweaked with the help of the implicit understanding algorithm is 
a method for maximizing expected value. However, in order to tackle issues that necessitate 
such systems require a significant amount of memory to retain contextual information 
would necessitate an insurmountable number of states (i.e., state networks). 
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Adaptive categorization chunkers 

In theory, Schmidhuber's hierarchical chunker systems (Schmidhuber, 1992; Bynagari, 2017) 
can bridge arbitrary time gaps, but only if local predictable exists throughout the sub-
sequences creating the time lags (Mozer, 1992). Schmidhuber, for example, employs 
hierarchical recurrent networks with conscience time scales to handle specific grammar 
learning tasks with minimal time lags in excess of one thousand steps (Bynagari, 2017). 
Conversely, when the noise level rises and the input categorizations develop less 
compressible, chunker systems' presentation suffers (Paruchuri, 2019). 

Long Short-Term Memory 

The "Long Short-Term Memory" (LSTM) method is a new, efficient, gradient-based 
approach. “The LSTM algorithm was created to solve the disappearing error problem. 
“Long Short-Term Memory" can learn to bridge small time gaps in excess of one thousand 
discrete time steps by trimming the gradient where it is not detrimental by using constant 
error carrousels to implement constant error flow inside the Special Forces”. Multiplicative 
gate units figure out how to open and close the gate, there is a continual error flow. In both 
time and space, the "Long Short-Term Memory" is local; its computational complication per 
time step and load is O. (1). Local, distributed, real-valued, and noisy pattern 
representations have all been used in artificial data experiments thus far. "Long Short-Term 
Memory" outperformed Back-Propagation through Time" (BPTT), “Real-Time Recurrent 
Learning" (RTRL), Recurrent Cascade-Correlation (RCC), Elman networks, and Neural 
Sequence Chunking in terms of a number of successful runs and speed of learning. 

CONCLUSION 

RNNs are the most general and powerful sequence learning algorithm currently available. 
Unlike Hidden Markov Models (HMMs), which have proven to be the most successful 
technique in a variety of sequence processing applications, they are not limited to discrete 
internal states and can represent continuous, dispersed sequences. As a result, they can 
address problems that no other method can.    Conventional RNNs, on the other hand, are 
difficult to train due to the problem of vanishing gradients. We believe this is why 
feedforward neural networks have more successful real-world applications than RNNs. 
Some of the solutions presented in this chapter may result in more efficient learning 
systems. Long lime lag research, on the other hand, appears to be in its infancy; no 
commercial uses of any of these approaches have been reported thus far. Long temporal 
lags are problematic for any soft computing technology, including RNNs. When dealing 
with extended sequences (such as speech or biological data), HMMs often use a localized 
representation of time via highly limited non-ergodic transition diagrams (different states 
are designed for different portions of a sequence). Diffusion of credit [5,] a phenomenon that 
closely mimics the vanishing gradients problem in RNNs, does not efficiently propagate 
belief over extended time lags. 
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