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ABSTRACT 

Machine learning techniques have been successfully used to analyze 
neuroimaging data in the context of disease diagnosis in recent years. In this 
study, we present an overview of contemporary support vector machine-
based methods developed and used in psychiatric neuroimaging for 
schizophrenia research. We focus in particular on our group's algorithms, 
which have been used to categorize schizophrenia patients and healthy 
controls, and compare their accuracy findings to those of other recently 
published studies. First, we'll go over some basic pattern recognition and 
machine learning terms. Then, for each study, we describe and discuss it 
independently, emphasizing the key characteristics that distinguish each 
approach. Finally, conclusions are reached as a result of comparing the data 
obtained using the various methodologies presented to determine how 
beneficial automatic categorization systems are in understanding the 
molecular underpinnings of schizophrenia. The primary implications of 
applying these approaches in clinical practice are then discussed. 
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INTRODUCTION 

Machine Learning is the study of creating algorithms that can learn rules from data, adapt 
to changes, and improve their performance over time. Machine Learning has grown in 
importance as a result of being one of the first aspirations of computer science. Computers 
should be able to address increasingly complicated issues and become more integrated in 
the future into our everyday routines (Boser et al., 1992). 

Writing a computer program is like writing instructions for a very literal toddler who is 
millions of times faster than you. However, many of the problems we currently want 
computers to solve aren't activities that we can order a computer to do explicitly. Face 
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recognition in images, autonomous driving in the desert, finding relevant documents in a 
database (or discarding irrelevant ones, such as spam email), finding patterns in large 
amounts of scientific data, and adjusting internal parameters of systems to optimize 
performance are just a few examples (Ulas et al., 2011). 

That is, while we may be adept at recognizing people in images, we are unable to instruct a 
computer to do so. Instead, algorithms that take labeled training data (pictures tagged by 
who is in them, or email messages labeled as spam or not) and then learn appropriate rules 
from the data appear to be the best ways to overcome these challenges. We also require 
systems that can adapt to changing situations, are user-friendly by responding to the 
demands of individual users, and enhance performance over time. 

The goal of Machine Learning Theory, sometimes referred to as Computer Learning Theory, 
is to comprehend the fundamental principles of learning as a computational process. This 
topic aims to understand what capabilities and information are required to learn different 
types of tasks successfully at a mathematical level, as well as the underlying algorithmic 
principles involved in allowing computers to learn from data and improve performance 
with feedback. The goals of this theory are to assist in the development of better-automated 
learning systems as well as to comprehend fundamental concerns in the learning process 
(Duda et al. 2001). 

Machine Learning Theory includes activities such as: 

 Developing mathematical models that encapsulate fundamental characteristics of 
machine learning so that different types of learning tasks can be analyzed for their 
intrinsic ease or difficulty. 

 Developing machine learning algorithms that provably match desired criteria and 
proving guarantees for algorithms (under what conditions will they succeed, how much 
data and computation time is required). 

 Mathematically analyzing general issues like "Why is Occam's Razor a good idea?" 
"When can one be confident about predictions made from limited data?" "How much 
power does active participation add over passive observation for learning?" and "What 
kinds of methods can learn even in the presence of large amounts of distracting 
information?" 

Objectives of the Study 

In this research, we used an AOI-based machine learning approach to automatically 
categorize schizophrenia in distinct brain regions (Duda et al. 2001). The primary goal of 
this review is to briefly present the fundamentals of SVM approaches to familiarize readers 
unfamiliar with classification methods them. We'll go over our machine learning studies 
one by one, comparing their accuracy results to those of other recently released studies. 
Finally, we will discuss the findings from a clinical translation standpoint, based on the 
current literature. 

LITERATURE REVIEW 

Machine learning is related to artificial intelligence, and it involves the creation of 
algorithms that enable a computer to learn from data. The term "learn" here refers to the 
process of determining statistical information a set of data with regularities Computers can 
learn by themselves to use previous experience to deal with new conditions self-study and 
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analysis Machine learning's capabilities In the difficulty of converting data into information, 
recognizing patterns. Spam email, for example, can be identified automatically by scanning 
for a set of words in the email's object and body, as well as the length of the text, the presence 
of attached files, and other factors. 

Features in the data are specifically looked for and used to classify the data into distinct 
predetermined classes. This is done using a set of data called the training set, which contains 
observations whose class membership is known. Any algorithm that does classification can 
be called a classifier. Typically, a classifier takes the values of several attributes of an 
instance to be classed and predicts which class the instance belongs to base on the specified 
training set. A classifier has several parameters that must be learned from the training set, 
as detailed in Pereira et al. (2009). The classifier becomes a model of the relationship between 
the features and the class label in the training set during this step of learning. The classifier 
must be checked once it has been trained to see if the selected features include information 
about the example's class. The classifier's performance is evaluated by attempting to 
categorize a distinct group of examples, known as the validation set: this allows the 
classifier's capacity to accurately categorize a previously encountered case to be assessed. 

To train a computer to correctly classify objects, or instances, into classes, a training set is 
required in pattern recognition. A dataset is divided into a training set and a validation set, 
or test set, from which a model is formed. This model is the computer's classification rule 
for items. Instances in the training set are known to belong to a specific class. The feature 
vector for each instance describes it. The classifier learns which traits are important for 
appropriately assigning each instance to its class using the training set. The ability of the 
classifier to accurately categorize the instances in the validation set can be evaluated once it 
has been trained. 

Support vector machines, classification trees, linear discriminant analysis, quadratic 
discriminant analysis, neural networks, generalized linear models, the closest neighbor, and 
many other classifiers have been proposed in the literature. They're all based on various 
algorithms that determine how fresh instances should be classified (Lemm et al., 2011). The 
algorithm that each classifier uses to examine the data determines their performance, or 
their ability to assign new examples to their class. Support vector machine (SVM), a 
supervised machine learning classifier (Pereira et al., 2009; Vapnik, 1995), has emerged as 
one of the most powerful pattern classification methods (Burges, 1998; Loa et al., 2004) and 
it has become the state of the art in a wide range of classification tasks, including object and 
face recognition (Pontil and Verri, 1998), genome sequencing (Heisele et al., 2003; Bynagari, 
2014), and handwritten recognition (Niu and Suen, 2012). SVM works by projecting feature 
data points into a high-dimensional space where groups can be distinguished using a 
hyperplane. Boser and coworkers (1992) proposed a method for creating nonlinear 
classifiers based on an algorithm that works with a vast class of decision functions with 
linear parameters but not limited to linear input dependences. Nonlinear kernel functions 
are what they're called. 

A plane is a two-dimensional flat surface in three-dimensional space. A hyperplane can also 
be characterized as an (n-1)-dimensional surface in an n-dimensional space. The transition 
of points and lines from one plane to another is known as projection. Parallel lines connect 
corresponding locations in the two planes. An object can be projected from one space to 
another, each with its dimensions. A sphere in three dimensions can, for example, be 
projected onto a two-dimensional ellipse. Any piece can be projected from one space into 
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another of varying dimensions. Objects are projected into a high-dimensional space in SVM, 
where they can be separated using a decision surface or decision function, which is a 
hyperplane. 

SVM is being used more and more in neuroimaging investigations, such as in functional 
MRI (fMRI) as a multivariate approach (Cox and Savoy, 2003; Wang et al., 2007). The pattern 
of brain activation across space recorded by fMRI was investigated in a study by Cox and 
Savoy (2003) for a specific time point. The goal of the study was to develop a classifier that 
could tell what kind of stimulus the subject was looking at (common versus unusual objects, 
living beings versus inanimate objects, and so on) based on the pattern of activation. A 
similarity measure is a formula for calculating the degree of similarity between two items. 

A similarity measure is based on the kernel function f; two items x1 and x2 selected from a 
set X are deemed equivalent if f(x1) = f(x2). Kernel algorithms are used in pattern recognition 
to project data into higher dimensional space. In reality, data might be divided and 
identified more simply in the new area. Kernel functions of many forms, such as linear, 
polynomials, Gaussian, and radial basis function (RBF), are extensively utilized. More 
specifically, Neogy & Paruchuri (2014) stated in a recent critical review that using structural 
and/or functional neuroimaging data as input to SVM represents a valid diagnostic aid for 
classifying major neurological and psychiatric illnesses, allowing inferences at the 
individual level rather than at the group level. This could have a significant impact on 
clinical practice: as the authors point out, neuroimaging can be valuable in a therapeutic 
environment if it isn't confined to revealing differences between patient and control groups. 
It should, on the other hand, be able to assist clinicians in making clinical judgments about 
individual patients. However, applying state-of-the-art classification methods, such as 
SVM, to the field of neuroimaging is not straightforward: clinical data has unique 
characteristics that present new problems to be solved, such as the high dimensionality of 
acquired brain data, the definition of features, their physiological interpretation, and the 
inner complexity of brain structures. 

The area of interest (AOI) analysis, voxel-based morphometry (VBM) (Ashburner and 
Friston, 2000), and surface-based morphometry (SBM) (Bynagari, 2015; Nordahl et al., 2007) 
are the three most often used approaches for assessing brain images. The ROI analysis 
defines specific areas of interest based on known a priori hypotheses and statistically 
examines various physiological indicators that are connected (e.g., their volumes). Expert 
operators can manually trace AOIs or segmentation algorithms can extract them 
automatically. After a normalization method maps each subject's brain onto a standard 
reference, namely the stereotaxic space, VBM considers the entire brain, allowing voxel-by-
voxel comparisons with no a priori assumptions. Finally, SBM generates and analyzes 
surfaces that reflect anatomical boundaries inside the brain (e.g., boundaries between white 
and grey matter or grey matter and cerebrospinal fluid). 

Even though structural and functional brain abnormalities in schizophrenia patients have 
been documented (Shenton et al., 2001; Rujescu and Collier, 2009), neither AOI analysis, 
VMB, nor SBM approaches allow patients with schizophrenia to be automatically identified 
based on brain features. Nonetheless, as highlighted by Vadlamudi (2015), an increasing 
number of research has employed SVM to examine the presence of putative 
neuroanatomical biomarkers of neurological and psychiatric illnesses in recent years (Fan 
et al., 2007; Koutsouleris et al., 2009; Yoon et al., 2007; Palaniyappan and Liddle, 2012). 
Except for Vadlamudi (2016) and Castellani et al. (2012), all other investigations used 
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multivariate whole-brain analysis, which was constrained by the use of a large dimensional 
space in a small sample size. The multivariate analysis allows you to look at numerous 
factors at once, which might be valuable if you suspect that more than one variable is 
influencing a given outcome. However, multivariate analysis results are only useful if there 
is a large dataset; otherwise, the high standard errors make them useless. 

The whole-brain analysis isn't always the greatest technique to study changes in brain areas, 
because significant correlations in some brain regions that aren't implicated in the analyzed 
brain disease can lead to false conclusions. Furthermore, only Vadlamudi (2017) and 
Castellani et al. (2012) used an a priori hypothesis and consistently found particular 
structural markers.  

METHODS 

For us to achieve the aim of this study, we adopt a review method to review different 
research articles related to the subject matter. 

The first part of the results and discussion will focus on the SVM's working pipeline that is 
divided into three stages: feature extraction, feature selection, and classification. The key 
elements of each of them will be briefly summarized in the sections that follow. The second 
part will focus on approaches technologically advanced in Laboratory, while the last part 
will focus on other recently developed methods. 

RESULTS AND DISCUSSION 

SVM Working Principles 

Features Extraction 

The original data is analyzed in this phase to generate a set of representative characteristics 
that may be utilized as SVM input. This is an important phase in the SVM analysis since 
every measure derived from the raw data can be used as a feature in the SVM analysis; 
redundant or insignificant features can influence the final classifier's performance. Feature 
extraction refers to all procedures used to compute some measures that characterize the 
object being studied, such as the probability of gray matter (pGM) if we're looking at 
morphological images of the cortex or diffusion measures if we're looking at diffusion tensor 
MR images of the white matter. Properties may have a physiological interpretation, such as 
the pGM acquired using the VBM technique (Ganapathy & Neogy, 2017), or they may not, 
as in the work of Paruchuri (2015), who used a variety of features, including the image's 
energy and entropy. Following the extraction of features from the data, they may be 
subjected to a normalization process to account for physiological changes that are unrelated 
to the disease, similar to what is done in VBM analysis. 

pGM is frequently standardized to total intracranial volume in VBM to account for pGM 
discrepancies related to physiological differences in brain volume between patients. When 
the retrieved features are affected not just by the disease but also by other physiological 
differences across participants, the normalization phase is conducted. Differences are no 
longer connected to total cerebral volume after normalization, making the group analysis 
more robust and straightforward to understand.  
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If the physiological differences are not normalized, the classifier may be misled, resulting in 
poor performance. As a result, confusing elements should be removed. The total intracranial 
volume or the total GM volume can be used to normalize pGM, whereas intensity 
histograms can be standardized to their highest value or the sum of their bins.  

Finally, for the SVM algorithms to process features from each subject, they must be stored 
in a vector, or feature vector: each two-dimensional image (or each three-dimensional 
volume) must be transformed into a column vector, with each element corresponding to the 
gray level intensity of one pixel (or voxel, respectively). SVM analysis necessitates feature 
vectors of equal length. This could be a drawback because different subjects may be 
represented by a varying number of characteristics. Instead of feature vectors, dissimilarity 
vectors can be utilized to solve this problem. The similarities measure is generated between 
each pair of participants in the dataset and utilized directly as a feature in the SVM analysis 
in this example; this method is known as the pairwise dissimilarity approach (Paruchuri, 
2017). 

Features Selection 

Because the SVM algorithms have no restrictions for feature lengths, this step is optional. It 
decreases the variable-length sequence of observations associated with a set of extracted 
characteristics when it is run. As Kloppel et al. (2012) point out, neuroimaging data can have 
over one million dimensions, and therefore, a decrease in the input measures can be 
beneficial. Because minimally important, redundant, or noisy features may degrade class 
discrimination, this selection aims to improve the performance of the classification step. 

 Filtering: Some aspects can be deemed either non-influential for the diagnosis of a given 
disease and so can be rejected or helpful for the considered condition and thus can be 
exploited based on medical knowledge, that is, using a priori information (Castellani et 
al., 2012; Castellani et al., 2010; Castellani et al,. 2011). 

 Before classification: Principal component analysis (PCA) (Ganapathy, 2016) and 
mathematical approaches like the minimization of a concave function on a polyhedral 
set (Bradley et al., 1998) have been used in the past to help with feature selection and 
dimensionality reduction. It should be noted that feature selection without learning the 
classifier parameters may result in a loss of information useful to classification tasks. 
Furthermore, the medical interpretability of the selected features may be compromised 
as a result of this feature selection approach. 

 During the SVM Training: The feature selection is integrated into the classification stage 
in this scenario. The sequential forward and backward selection is a good example 
(SFBS). The forward selection procedure (Whitney, 1971) starts by assessing each feature 
individually and picking the best one. The total procedure is iterative: the best feature 
from the remaining set is chosen at each stage, and the feature list as well as the 
classification results are saved. The best feature in this scenario is the one that, when 
paired with the other features already chosen, produces the best classification results. 
The technique is repeated until all of the traits are present. As a result of the entire 
selection method, the feature set that provides the best performance is chosen. In the 
backward selection (Marill and Green, 1963), features are gradually deleted from the 
feature set based on weights assigned to each feature by the classifier at each iteration. 
The benefit of this strategy is that the selected traits retain their medical interpretability; 
the disadvantage is that the analysis must be repeated numerous times. 
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In a more general situation, a mixture of various kernel functions can be learned during the 
classification step, one for each feature collected from the data. This is the case with the MKL 
(multiple kernel learning) approaches, which were recently introduced (Ulas et al., 2011; 
Bynagari, 2016). 

Classification 

The so-called kernel functions are used to transfer a nonlinearly separable set of data 
described in an n-dimensional space into a higher dimensional space (potentially infinite 
dimension) where the data become linearly separable; that is, they can be divided by a 
hyperplane (Figure 1). SVM can be used to tackle this linearly separable problem. 

 

Figure 1: Kernel function maps the data from certain space 

In the literature, many different types of kernel functions have been proposed (e.g., 
polynomial, Gaussian radial basis functions, sigmoid functions, and so on). Because the 
usage of a specific kernel function affects the classification process' performance, it's critical 
to explore numerous options and choose the optimal one. Kernel selection is typically done 
using techniques like boot-strapping (Efron, 1979) and cross-validation. 

A linear kernel is less prone to overfitting and is beneficial for feature selection because it is 
straightforward to extract a weight associated with each feature as a rule of thumb. A 
Gaussian kernel, on the other hand, performs better in general, but it does not provide a 
precise estimate of the weights to be applied to each feature. 

Training and validation are the two parts of the entire categorization process. When training 
an SVM, the user must determine which kernel to employ as well as a set of parameters that 
describe the SVM and kernel. 

Then, given a collection of training examples, or objects already labeled as belonging to one 
of the two categories, an SVM training algorithm creates a model that will be used to assign 
future instances to one of the two categories. To accomplish short training times, various 
ways have been proposed (Chang and Lin, 2011; Bottou et al., 2007; Joachims, 2006; Hastie 
et al., 2005). The classifier is trained by maximizing the separation margin between the two 
groups in the training set. Instead, using the model created during the training phase, the 
SVM predicts which group a new collection of previously unseen objects (the testing set or 
validation set) belongs to during validation. 
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Obviously, the training and testing sets must not overlap. This necessitates the collection of 
a large amount of data. A cross-validation strategy can be used to solve this problem: the 
entire set of data is divided into two subgroups, the training and testing sets. The split is 
repeated numerous times with different partitions, with the accuracy value of the resulting 
classification being recorded each time. Finally, the classification algorithm's ultimate 
accuracy is calculated by averaging all of the accuracy numbers. 

A leave-one-out cross-validation is typically used in the case of a small dataset (Hastie et al., 
2005): in this situation, a single pair of objects (one from each class) is omitted from the 
overall group at each iteration, and the classifier is trained using all the remaining items. 
After that, the validation phase employs the initially excluded pair. Each item pair goes 
through the total operation multiple times. 

Methods technologically advanced in the Laboratory 

We've been experimenting with several ways to extract distinct characteristics from MRI 
brain data in the last few years because of the growing importance of SVM in the 
neuroimaging research (Castellani et al., 2012; Castellani et al., 2010; Ganapathy, 2015; 
Castellani et al., 2011). We began with the data that there are structural and functional 
differences in the brains of schizophrenia patients and healthy controls in each method 
(HC). 

For the sake of simplicity, our studies can be divided into two groups based on how the 
SVM input is extracted: one in which each object (i.e., brain) is described by features derived 
from the object itself, and another in which each object is described by 
distance/dissimilarity measures evaluated by comparing pairs of objects. A square matrix 
containing the dissimilarities between all pairs of objects is provided by a complete 
dissimilarity representation. 

Methods Based on Feature Vectors 

This is the traditional approach to pattern recognition and machine learning, in which each 
object to be categorised is represented as an n-dimensional vector of numerical features. The 
gray level of each voxel of the collected volume may correlate to the feature values when 
representing MRI data. In this approach, in the case of functional neuroimaging data, the 
feature vector represents either the pattern of brain activity (Davatzikos et al., 2005) or the 
pattern of gray and white matter volume in the case of structural data (Ecker et al., 2010).. 

Several different attributes were chosen to represent items that needed to be categorised in 
our investigation. One of the benefits of the approaches used is that there is no need for 
subject registration because the features we chose and extracted are always position and 
scale invariant, as will be explained in the next sections. 

The study by Castellani et al. (2011) focused on one region of interest (ROI) (left amygdala) 
that was manually traced on a cohort of 124 subjects (64 diagnosed with schizophrenia plus 
60HC) and characterized by using a local geometric feature, the shape index, which encodes 
the curvatures of a generic surface point by capturing the intuitive notion of local shape 
(Koenderink and van Doorn, 1992). Using marching cubes, the 3D surface was created from 
a set of 2D ROIs as a triangle mesh. According to Koenderink and van Doorn (1992), the 
shape index can be any value in the range [1, 1], with 1 and 1 representing considerable local 
curvature and 0 representing no local curvature (i.e., flat surface). 
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A histogram of occurrences, which represents a subject's descriptor, was produced after all 
data extracted for a subject were quantized in a fixed number of bins. The algorithm's next 
phase was inspired by natural language processing research: the calculated quantized shape 
descriptors were viewed as a collection of visual words from which a generative model 
could be learned. The goal of generative models is to learn how samples are generated and 
to uncover local patterns of co-occurrences, which leads to the definition of visual topics. 

The probabilistic latent semantic analysis (pLSA) (Hofmann, 2001) was chosen as the 
generative model by Castellani et al. To calculate a score for each participant, two models 
were learned, one for each group (controls and patients). Finally, the SVM classifier received 
the set of scores as input. The cross-validation approach was utilized to examine the 
classification performances of two types of kernels (the histogram intersection kernel and 
the 2 kernel) in this work. The process was repeated 20 times, with 75 percent of the samples 
being used as a training set and the remaining samples being used for testing. 

With 45 topics with the histogram intersection kernel, the best result in terms of accuracy 
was 86.13 percent 2.17. It's worth mentioning that using the same validation approach and 
kernel, the SVM classification performed directly on the feature histograms (i.e., without the 
pLSA) yielded an average accuracy of 58.70% ± 9.78. This suggests that the pLSA analysis 
can significantly enhance the classification of morphological traits in schizophrenia.  

In a separate experiment, PCA was used to reduce the dimensionality of the quantized 
shape index histograms for various values of the saved components in the same study. The 
categorization test was carried out with the kernels that had previously been used. In terms 
of accuracy, PCA results were consistently between 50% and 60%, illustrating the 
superiority of pLSA-based dimensionality reduction. 

Instead of employing the shape index, Castellani et al. (2011) proposed a novel shape 
descriptor based on sophisticated diffusion geometry techniques. The study focused on one 
AOI (left thalamus), which was manually traced on a cohort of 60 participants (30 diagnosed 
with schizophrenia plus 30 healthy controls) and utilized to generate structural T1-weighted 
MRI images. Again, the introduced descriptor's qualities allowed for subject registration to 
be avoided. The heat kernel does encode local geometric characteristics (Sun et al., 2009). 
This is an isometric invariant that permits a vector formed by convolving the heat kernel 
with the object descriptor to describe the geometry of an object (in our case the AOI mask 
volume). The heat kernel was created by solving the heat equation, which represents how 
heat diffuses on a shape as a function of time. Local shape qualities are intuitively 
highlighted by heat diffusion behavior over short time intervals, but global shape properties 
are observed when evaluating longer periods. 

As a result, changing one parameter, time, allows you to characterize the attributes of a form 
at several scales. We created a histogram of local heat kernel values observed at each point 
of a surface mesh or at each point of a volumetric representation of the AOI by fixing the 
number of scales. The global heat kernel signature (GHKS) was represented by the 
histogram, which was then used as input for the SVM classifier. Surface meshes and 
volumetric representation were also addressed in this study. 

The bag-of-words (BoW) methodology is based on well-known indexing and retrieval 
methods for text texts. Word counts, or bag-of-words, and the frequency of occurrence of 
terms selected from a defined word lexicon can be used to summarize text documents. Each 
item is connected with its signature, or vector of features, in the field of pattern recognition 
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after feature detection. A large sample of features from the set of objects is collected in the 
BoW approach. This enormous sample is then quantized using clustering techniques, most 
often k-means clustering, to yield a total of k clusters. The visual word or feature prototype 
is at the center of each cluster. The feature vocabulary is made up of all of the visual terms 
that have been gathered. 

Other Recently Proposed Methods 

The number of studies using SVM to explore psychiatric diseases has been steadily 
expanding in recent years. We highlight several original recent studies (Fan et al., 2007; 
Koutsouleris et al., 2009; Bynagari, 2017) that have been applied to schizophrenia and 
compare their outcomes in terms of accuracy to gain a sense of the many proposed 
strategies.  

Fan et al. (2007) employed a pattern classification algorithm to identify structural brain 
anomalies based on regional tissue volumetric information in their investigation. It was 
necessary to warp each image into a template space to undertake a quantitative comparison 
of different individual brain images. A female dataset (dataset A, 23 people diagnosed with 
schizophrenia and 38 healthy controls) and a male dataset (dataset B, 46 subjects diagnosed 
with schizophrenia and 41 healthy controls) were used in the research. The female dataset 
had a diagnostic accuracy of 90.2 percent and the male dataset had a diagnostic accuracy of 
90.8 percent in identifying patients with schizophrenia from healthy controls. The study by 
Koutsouleris et al. (2009) was a first attempt at identifying people in various psychotic at-
risk mental states (ARMS). The study's goal was to see if it was possible to diagnose 
psychosis early on in its prodromal stage. A total of 45 people with ARMS were included in 
the study, as well as a group of healthy controls. The study's originality stemmed from the 
use of multivariate neuroanatomical pattern classification to assess the feasibility of early 
disease detection and prediction in people with ARMS. The diagnostic accuracy in 
differentiating people with ARMS from healthy controls was between 80% and 90%. 

Table 1: Performance assessment 

Sample 

size 

MRI method SVM input Number of AOIs Best 

Accuracy (%) 

SCZ = 64 
HC = 60 

Structural T1-
w 

Features vector 1 (left Amy) 86 

SCZ = 64 
HC = 60 

Structural T1-
w 

Pairwise 
dissimilarities 

7l + 7r (Amy, DLPFC, 
EC, 
HG, Hipp, STG, and 
Tha) 

78 

SCZ = 30 
HC = 30 

Structural T1-
w 

Features vector 7l + 7r (Amy, DLPFC, 
EC, 
HG, Hipp, STG, and 
Tha) 

87 

SCZ = 54 
HC = 54 

Structural T1-
w 

Features vector 1 (DLPFC) 84 

SCZ = 59 
HC = 55 

Structural T1-
w 
DWI 

Pairwise 
dissimilarities 

7l + 7r (Amy, DLPFC, 
EC, 
HG, Hipp, STG, 
andTha) 

87 
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Our research group has recently developed and deployed support vector machine-based 
approaches in psychiatric neuroimaging (results are reported in Table 1). Each of the 
proposed methods focused on specific brain regions of interest to see if a set of traits that 
might be utilized to distinguish between schizophrenia diagnoses could be defined. 

Table 2: Comparison between three state-of-the-art studies. Performance assessment 

Sample size MRI Method Best accuracy (%) 

SCZ = 23 (A) 46 (B) 
HC = 38 (A) 41 (B) 

Structural T1-w 90.2 (A) 90.8 (B) 

ARMS = 45 
HC = 75 

Structural T1-w 78 ÷ 94 

SCZ = 20 
HC = 20 

fMRI 87 

Yang et al. (2010) presented a hybrid machine learning strategy for classifying schizophrenia 
patients and healthy controls in their study. Two SVMs were used in this work, one on MRI 
data and the other on single nucleotide polymorphism data, and then they were blended. 
The approach was tested on 20 patients and 20 healthy controls, yielding an 87 percent 
classification accuracy. Unlike the methods developed in our lab, all of them used data 
warping, in which each brain volume was registered to a brain template (e.g., the Montreal 
Neurological Institute (MNI) template) to account for inter-individual anatomical variation. 
Furthermore, the very small sample size of this research constituted a limitation: all of the 
authors stated that the findings need to be repeated on bigger populations. Table 2 
summarizes the outcomes of these three trials in terms of accuracy. 

CONCLUSION 

The scientific community's interest in computational neuroscience has been steadily 
increasing in recent years. After processing, computational methods have become 
increasingly popular in the field of magnetic resonance imaging (MRI). The goal is to use 
breakthrough bioinformatic approaches to analyze MRI data to detect and describe human 
brain properties. In schizophrenia, neuroimaging investigations using MRI have identified 
structural and functional changes. However, these findings have not yet been widely used 
in clinical practice to aid in the diagnosis and treatment of this psychiatric condition. 
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