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ABSTRACT 

Nonlinear partial differential equations are mostly renowned for depicting 
underlying behavior of nonlinear phenomena relating to the nature of real 
world. In this paper, we discuss for analytic solutions of fractional order 
nonlinear Schrodinger types equations such as the space-time fractional 
nonlinear Schrodinger equation and the (2+1)-dimensional time-fractional 
Schrodinger equation. The considered equations are converted into ordinary 
differential equations with the help of wave variable transformation and then 
the recently established rational (𝐷𝜉

𝛼𝐺/𝐺2)-expansion method is employed to 

construct the exact solutions. The obtained solutions are appeared in the forms 
of trigonometric function, hyperbolic function and rational function which are 
compared with those of literature and claimed to be different. The graphical 
representations of the solutions are finally brought out for their physical 
appearances. The applied method is seemed to be efficient, concise and 
productive which might be used for further research. 

Mathematics Subject Classifications: 35C08, 35R11 
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INTRODUCTION 

In many fields of science, it is important to integrate and solve nonlinear partial derivative 
differential equations that contain derivative by time. The results of fractional nonlinear 
wave models have presented an advanced success in applied mathematics and engineering, 
mathematical physics, soliton physics. These fractional nonlinear wave models become 
much devotion in several other areas like signal processing, psychology, finance, acoustics, 
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biology systems, medical processes, chemical physics, biology, fluid mechanics, medical 
process, and many more (Laskin, 2002; Eslami et al., 2004). Recently, the search for a 
different type of solution of the fractional nonlinear Schrodinger’s model has represented 
numerous scientists and researchers (Saxena & Kalla, 2010; Abdel-Salam et al., 2016; Younis 
et al., 2017; Rizvi et al., 2017). The established methods available in the literature are 𝐺′/𝐺-
expansion method for nonlinear fractional differential equations by Bekir and Guner (2013), 
the meshless method of lines (Mohyud-Din, 2012), Adomian decomposition scheme (Guo, 
2019), the new generalized 𝐺′/𝐺-expansion method (Alam et al., 2014; Alam, 2015; Alam & 
Li, 2019), the Darcy law method (Sheikholeslami, 2017), the reproducing kernel algorithm 
(Omar, 2019a), topological solitons for certain differential equation by Biswas et al. (2013a), 
Biswas et al. (2013b), Laplace-Adomian decomposition method (Shah et al., 2019), 
reproducing kernel Hilbert space method (Omar, 2019b), homotopy perturbation method 
(Golmankhaneh & Baleanu, 2011), improved sub-equation method (Karaagac, 2019), 
Schrodinger’s equation (Rizvi et al., 2017; Li et al., 2019), generalized exponential rational 
function method (Ghanbari et al., 2019), the Kudryashov methods (Saha, 2016; Kudryashov, 
2012), integral transform based decomposition methods are used for Schrodinger and other 
differential equations by Nuruddeen (2017); Nuruddeen & Nass (2017), Various phenomena 
such as shallow water waves and multicellular biology dynamics arising in the nonlinear 
physical science (Lu et al., 2017; Bazyar & Song, 2017), the (𝐺′/𝐺, 1/𝐺)-expansion method 
(Zayed & Abdelaziz, 2012; Zayed et al., 2018; Zayed & Alurrfi, 2016), the Jacobi collocation 
method (Doha et al., 2014; Bhrawy et al., 2014a; Bhrawy et al., 2014b)], the improved tanh 
method (Islam & Akter, 2021a), the rational (𝐺′/𝐺)-expansion method (Jannah et al., 2021) 
etc. In lower the summary of this paper shown. In the 2nd section, conformable fractional 
derivative and methodology are displayed, in the 3rd section application of this method, in 
the 4th section graphical representations are shown, the 5th section is for conclusion. 

PRELIMINARIES AND METHODOLOGY 

Conformable fractional derivative   

Let 𝜔: [0, ∞) → 𝑹 be a function. The 𝛼′𝑠 order conformable derivative of 𝑢 is defined by 
Khalil et al. (2014) 

𝐷𝑥
𝛼(𝜔(𝑥)) = lim

ℎ→0

𝜔(𝑥+ℎ𝑥1−𝛼)−𝜔(𝑥)

ℎ
   

for all 𝑥 > 0 and 𝛼𝜖(0,1). Further, the following theorems gives some properties of 
conformable derivative: 

Theorem 1. Let 𝛼𝜖(0,1) and suppose 𝜔(𝑥) and 𝜚(𝑥) are 𝛼-differentiable at 𝑥 > 0. Then  

(i). 𝐷𝑥
𝛼(𝑥𝜍) = 𝜍𝑥𝜍−𝛼, for all 𝜍𝜖𝑹. 

(ii). 𝐷𝑥
𝛼(𝛽) = 0, 𝛽 for all constant function 𝜔(𝑥) = 𝛽. 

(iii). 𝐷𝑥
𝛼(𝛽𝜔(𝑥)) = 𝛽𝐷𝑥

𝛼𝜔(𝑥), for all 𝛽 constant. 

(iv). 𝐷𝑥
𝛼(𝛽𝜔(𝑥) + 𝛾𝜚(𝑥)) = 𝛽𝐷𝑥

𝛼𝜔(𝑥) + 𝛾𝐷𝑥
𝛼𝜚(𝑥), for all 𝛽, 𝛾𝜖𝑅. 

(v). 𝐷𝑥
𝛼(𝜚(𝑥)𝜔(𝑥)) = 𝜚(𝑥)𝐷𝑥

𝛼(𝜔(𝑥)) + 𝜔(𝑥)𝐷𝑥
𝛼(𝜚(𝑥)). 

(vi). 𝐷𝑥
𝛼 (

𝜔(𝑥)

𝜚(𝑥)
) =

𝜚(𝑥)𝐷𝑥
𝛼𝜔(𝑥)−𝜔(𝑥)𝐷𝑥

𝛼𝜚(𝑥)

𝜚2(𝑥)
, 𝜚 ≠ 0. 

(vii). If, in addition to 𝜔(𝑥) differentiable, then 𝐷𝑥
𝛼𝜔(𝑥) = 𝑥1−𝛼 𝑑𝜔

𝑑𝑥
. 
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Theorem 2. Let 𝛼𝜖(0,1) such 𝜔(𝑥) is differentiable and also 𝛼-differentiable. Let 𝜚(𝑥) be a 
function defined in the range of  𝜔(𝑥) also differentiable, then 

𝐷𝑥
𝛼(𝜔(𝑥). 𝜚(𝑥)) = 𝑥1−𝛼𝜚′(𝑥)𝜔′(𝜚(𝑥)). 

Methodology 

In this section, we introduce the newly established rational (𝐷𝜉
𝛼𝐺/𝐺2)-expansion method 

(Islam & Akter, 2021b) for finding exact analytic solutions of nonlinear partial differential 
equations. Consider the FNLEE in the independent variables 𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛 as 

Q(𝑢1, … , 𝑢𝑘 , 𝐷𝑡
𝛼𝑢1, … , 𝐷𝑡

𝛼𝑢𝑘 , 𝐷𝑥1

𝛽
𝑢1, … , 𝐷𝑥1

𝛽
𝑢𝑘 , … 𝐷𝑥𝑛

𝛽
𝑢1, … 𝐷𝑥𝑛

𝛽
𝑢𝑘 , … ) = 0,           (2.2.1) 

where 𝑢𝑖 = 𝑢𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛), 𝑖 = 1, … , 𝑘 are unknown functions, 𝐹 is a polynomial in 𝑢𝑖  and 
it’s various partial derivatives of fractional order. 

Making use of the fractional composite transformation 

𝑢𝑖 = 𝑢𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑈𝑖(𝜉), 𝜉 = 𝜉(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)           (2.2.2)  

Eq. (2.2.1) is turned into the following ordinary differential equation of fractional order with 
respect to the variable 𝜉: 

𝑄(𝑢1, … , 𝑢𝑘 , 𝐷𝜉
𝛼𝑢1, … , 𝐷𝜉

𝛼𝑢𝑘 , 𝐷𝜉
𝛽

𝑢1, … , 𝐷𝜉
𝛽

𝑢𝑘 , … ) = 0            (2.2.3)  

We may, if possible, take the anti-derivative of Eq. (2.2.3) term by term one or more times 
and integral constant can be set to zero as soliton solutions are sought. 

Now, we discuss the main steps of the above-mentioned method to investigate exact 
analytic solutions of FNLEEs as follows: 

First step: Suppose the solution to be in the form 

𝑈(𝜉) =
∑ 𝜄𝑖(𝐷𝜉

𝛼𝐺/𝐺2)𝑖  𝑛
𝑖=0

∑ 𝜏𝑖(𝐷𝜉
𝛼𝐺/𝐺2)𝑖  𝑛

𝑖=0

,       (2.2.4) 

where at least one of 𝜄𝑛 and 𝜏𝑛 is nonzero; 𝜄𝑖(𝑖 = 0, 1, 2, … , 𝑛), 𝜏𝑖(𝑖 = 0, 1, 2, … , 𝑛) and 𝑑 are 
unknown parameters, and 𝐺 = 𝐺(𝜉) satisfies the following auxiliary nonlinear ordinary 
differential equation of fractional order: 

𝐺2𝐷𝜉
2𝛼𝐺 − (2𝐺 + 𝜆)(𝐷𝜉

𝛼𝐺)2 − 𝜇𝐺4 = 0      (2.2.5) 

It can be written as  

𝐷𝜉
𝛼(𝐷𝜉

𝛼𝐺/𝐺2) = 𝜇 + 𝜆(𝐷𝜉
𝛼𝐺/𝐺2)2      (2.2.6) 

The nonlinear fractional composite wave variable transformation 𝐺(𝜉) = 𝐻(𝜂), 𝜂 = 𝜉𝛼/𝛼 
reduces Eq. (2.2.5) into the following ODE: 

𝐻2𝐻′′ − (2𝐺 + 𝜆)𝐻′2 − 𝜇𝐻4 = 0      (2.2.7) 

whose solutions are well-known. Since 𝐷𝜉
𝛼𝐺(𝜉) = 𝐷𝜉

𝛼𝐻(𝜂) = 𝐻′(𝜂)𝐷𝜉
𝛼𝜂 = 𝐻′(𝜂), with the aid 

of the solutions of Eq. (2.2.7), we can obtain the solutions of Eq. (2.2.5) as follows:   

(𝐷𝜉
𝛼𝐺/𝐺2) = √𝜇/𝜆 ×

𝐴𝑐𝑜𝑠√𝜆μ𝜉𝛼/𝛼+𝐵𝑠𝑖𝑛√𝜆μ𝜉𝛼/𝛼

𝐵𝑐𝑜𝑠√𝜆μ𝜉𝛼/𝛼−𝐴𝑠𝑖𝑛√𝜆μ𝜉𝛼/𝛼
,    𝜆𝜇 > 0          (2.2.8) 

(𝐷𝜉
𝛼𝐺/𝐺2) = −√|𝜆𝜇|/𝜆 ×

𝐴𝑠𝑖𝑛ℎ(2√𝜆μ𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆μ𝜉𝛼/𝛼)+𝐵

𝐴𝑠𝑖𝑛ℎ(2√𝜆μ𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆μ𝜉𝛼/𝛼)−𝐵
, 𝜆𝜇 < 0         (2.2.9) 
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(𝐷𝜉
𝛼𝐺/𝐺2) = −

𝐴𝛼

𝜆(𝐴𝜉𝛼+𝐵𝛼)
,         𝜇 = 0, 𝜆 ≠ 0      (2.2.10) 

Second step:  Due to the theme of homogenous balance, Eq. (2.2.3) serves the value of 𝑛 
appeared in Eq. (2.2.4). 

Third step: Use Eqs. (2.2.4) and (2.2.5) in Eq. (2.2.3) with the value of 𝑛 found in second step 
to obtain a polynomial in (𝐷𝜉

𝛼𝐺/𝐺2). Set each coefficient of this polynomial to zero and solve 

them by computer software Maple to gain the values of the unknown parameters available 
in Eq. (2.2.4). 

Fourth step: Utilizing the values calculated at third step in Eq. (2.2.4) along with Eqs. (2.2.8)-
(2.2.10) makes available exact analytic solutions to Eq. (2.2.1). 

APPLICATION OF THE METHOD  

The well-known space and time fractional nonlinear Schrodinger equation is 

𝑖𝐷𝑡
𝛼𝑢 + 𝐷𝑥

2𝛽
𝑢 + 2|𝑢|2𝑢 = 0, 𝑡 > 0, 0 < 𝛼, 𝛽 ≤ 1,      (3.1.1) 

where 𝑥 is the spatial variable and 𝑡 represents time. This equation occurs in non-linear 
optics, superconductivity and plasma physics. We introduce the fractional composite 
transformation as follows:  

𝑢(𝑥, 𝑡) = 𝑒𝑖𝜑𝑢(𝜉), 𝜑 = 𝑚1/𝛽𝑥 + 𝑘1/𝛼𝑡, 𝜉 = 𝑥 + 𝑟1/𝛼𝑡,     (3.1.2) 

where 𝑟, 𝑘 and 𝑚 are arbitrary constants to be determined later. Eq. (3.1.1) with the aid of 
Eq. (3.1.2) reduces to one whose real part and imaginary part are given as: 

−(𝑘 + 𝑚2)𝑢 + 𝐷𝜉
2𝛼𝑢 + 2𝑢3 = 0,       (3.1.3) 

𝑟𝐷𝜉
𝛼𝑢 + 2𝑚𝐷𝜉

𝛼𝑢 = 0,                (3.1.4) 

where 𝑢 and its various derivatives are functions of 𝜉. Eq. (3.1.4) yields = −
𝑟

2
 , so that Eq. 

(3.1.3) becomes 

−(4𝑘 + 𝑟2)𝑢 + 8𝑢3 + 4𝐷𝜉
2𝛼𝑢 = 0.       (3.1.5) 

Balancing the terms 𝐷𝜉
2𝛼𝑢 and 𝑢3 provides 𝑛 = 1 and the solution Eq. (2.2.4) takes the form  

𝑢(𝜉) =
𝜄0+𝜄1(𝐷𝜉

𝛼𝐺(𝜉)/𝐺2(𝜉))

𝜏0+𝜏1(𝐷𝜉
𝛼𝐺(𝜉)/𝐺2(𝜉))

.        (3.1.6) 

Inserting Eq. (3.1.6) with its essential derivatives and Eq. (2.2.6) into Eq. (3.1.5) makes a 
polynomial in (𝐷𝜉

𝛼𝐺(𝜉)/𝐺2(𝜉)). Collect each coefficient of this polynomial and set to zero, 

we get a system of algebraic equations for 𝜄0, 𝜄1, 𝜏0, 𝜏1, 𝑟 and 𝑘 whose values are obtained by 
solving these equations by computational software Maple as follows: 

Set 1: 𝜄0: = ±𝑖𝜇𝜏1; 𝜄1: = 0; 𝜏0: = 0; 𝑘 ≔ −
𝑟2

4
+ 2𝜇𝜆;            (3.1.7) 

Set 2: 𝜄0: = ∓𝑖𝜇𝜏1; 𝜄1: = ±𝑖𝜏0𝜆; 𝑘 ≔ −
𝑟2

4
+ 2𝜇𝜆;      (3.1.8) 

Inserting the values from Eq. (3.1.7) and Eq. (3.1.8) into Eq. (3.1.6) yields 

𝑢1(𝜉) =
±𝑖𝜇𝑒𝑖𝜑

(𝐷𝜉
𝛼𝐺/𝐺2)

,         (3.1.9) 
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𝑢2(𝜉) = 𝑒𝑖𝜑 ×
∓𝑖𝜇𝜏1±𝑖𝜏0𝜆(𝐷𝜉

𝛼𝐺/𝐺2)

𝜏0+𝜏1(𝐷𝜉
𝛼𝐺/𝐺2)

,       (3.1.10) 

Eqs. (3.1.9), (3.1.10) together with the Eqs. (2.2.8)-(2.2.10) make available the following 
outcomes: 

𝑢1
1,2(𝜉) = ±𝑒𝑖𝜑√

𝜆

𝜇
×

𝑖𝜇×(𝐵𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼−𝐴𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼)

𝐴𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼+𝐵𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼
, 𝜆𝜇 > 0,         (3.1.11) 

where 𝜑 = (−𝑟/2)1/𝛼𝑥 + ((8𝜆𝜇 − 𝑟2)/4)
1/𝛼

𝑡, 𝜉 = 𝑥 + 𝑟1/𝛼𝑡. 

𝑢1
3,4(𝜉) = ∓𝑒𝑖𝜑√

𝜆

|𝜆𝜇|
×

𝑖𝜇×{𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)−𝐵}

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐵
, 𝜆𝜇 < 0,       (3.1.12) 

where 𝜑 = (−𝑟/2)1/𝛼𝑥 + ((8𝜆𝜇 − 𝑟2)/4)
1/𝛼

𝑡, 𝜉 = 𝑥 + 𝑟1/𝛼𝑡. 

𝑢2
5,6(𝜉) = 𝑒𝑖𝜑 ×

∓𝑖𝜇𝜏1±𝑖𝜏0√𝜆𝜇×
𝐴𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼+𝐵𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

𝐵𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼−𝐴𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

𝜏0+𝜏1√𝜇/𝜆×
𝐴𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼+𝐵𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

𝐵𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼−𝐴𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

, 𝜆𝜇 > 0,       (3.1.13) 

where 𝜑 = (−𝑟/2)1/𝛼𝑥 + ((8𝜆𝜇 − 𝑟2)/4)
1/𝛼

𝑡, 𝜉 = 𝑥 + 𝑟1/𝛼𝑡. 

𝑢2
7,8(𝜉) = 𝑒𝑖𝜑 ×

∓𝑖𝜇𝜏1∓𝑖𝜏0√𝜆|𝜆𝜇|×
𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐵

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)−𝐵

𝜏0−𝜏1√|𝜆𝜇|/𝜆×
𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐵

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)−𝐵

, 𝜆𝜇 < 0,       (3.1.14) 

where 𝜑 = (−𝑟/2)1/𝛼𝑥 + ((8𝜆𝜇 − 𝑟2)/4)
1/𝛼

𝑡, 𝜉 = 𝑥 + 𝑟1/𝛼𝑡. 

𝑢2
9,10(𝜉) = 𝑒𝑖𝜑 ×

∓𝑖𝜏0×
𝐴𝛼

(𝐴𝜉𝛼+𝐵𝛼)

𝜏0−𝜏1×
𝐴𝛼

𝜆(𝐴𝜉𝛼+𝐵𝛼)

, 𝜇 = 0, 𝜆 ≠ 0,          (3.1.15) 

where 𝜑 = (−𝑟/2)1/𝛼𝑥 + ((8𝜆𝜇 − 𝑟2)/4)
1/𝛼

𝑡, 𝜉 = 𝑥 + 𝑟1/𝛼𝑡. 

The above obtained solutions are compared with those of (Kaplan et al., 2016) and seemed 
to be different which first time recorded in the literature. 

3.2. The (2+1)-dimensional time-fractional Schrodinger equation 

The (2+1)-dimensional time-fractional Schrodinger equation is 

𝑖𝐷𝑡
𝛼𝑢 + 𝜌𝑢𝑥𝑥 − 𝜂𝑢𝑦𝑦 + 𝜏𝑢|𝑢|2 = 0,              (3.2.1) 

where 𝜌, 𝜂 and 𝜏 are unknown parameters.  

The consideration  

𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 + 𝑦 + 𝑟1/𝛼𝑡,      (3.2.2) 

forces Eq. (3.2.1) to become 

𝑖𝑟𝐷𝜉
𝛼𝑢 + 𝜌𝐷𝜉

2𝛼𝑢 − 𝜂𝐷𝜉
2𝛼𝑢 + 𝜏𝑢|𝑢|2 = 0.      (3.2.3) 

with 

 𝑢(𝜉) = 𝑒𝑖𝑘𝜉𝑣(𝜉),         (3.2.4) 

where 𝑣(𝜉) is a real-valued function and 𝑘 is unknown parameter. Equating real and 
imaginary parts from Eq. (3.2.3) yields 



Nahar et al.: Wave Structures for Nonlinear Schrodinger Types Fractional Partial Differential Equations Arise in Physical Sciences                      (101-110) 

Page 106 Engineering International, Volume 9, No. 2 (2021) 

𝑟𝐷𝜉
𝛼𝑣 + 2𝑘(𝜌 − 𝜂)𝐷𝜉

𝛼𝑣 = 0,       (3.2.5) 

(𝜌 − 𝜂)𝐷𝜉
2𝛼𝑣 + 𝜏𝑣3 − (𝑘𝑟 + 𝑘2(𝜌 − 𝜂))𝑣 = 0.     (3.2.6)   

From Eq. (3.2.5),  

 𝑘 =
𝑟

2(𝜂−𝜌)
.         

        (3.2.7) 

Eq. (3.2.6) reduces to 

4(𝜌 − 𝜂)2𝐷𝜉
2𝛼𝑣 + 4𝜏(𝜌 − 𝜂)𝑣3 + 𝑟2𝑣 = 0.       (3.2.8) 

Due to the homogenous balance principle, we attain 𝑛 = 1 and solution (2.2.4) turns into 

𝑣(𝜉) =
𝜄0+𝜄1(𝐷𝜉

𝛼𝐺(𝜉)/𝐺2(𝜉))

𝜏0+𝜏1(𝐷𝜉
𝛼𝐺(𝜉)/𝐺2(𝜉))

.         (3.2.9) 

Eq. (3.2.8) with solution (3.2.9) and Eq. (2.2.5) becomes a polynomial in (𝐷𝜉
𝛼𝐺(𝜉)/𝐺2(𝜉)). Set 

each coefficient to zero and solve by computational software Maple for the following 
outcomes: 

Set 1: 𝜄0: = 0; 𝜄1: = ±√
2(𝜂−𝜌)

𝜎
𝜏0𝜆; 𝜏1 = 0; 𝑟 = ±2√−2𝜆𝜇(𝜂 − 𝜌);       (3.2.10) 

Set 2: 𝜄0: = ±√
2(𝜂−𝜌)

𝜎
𝜏1𝜇; 𝜄1: = ∓√

2(𝜂−𝜌)

𝜎
𝜏0𝜆; 𝑟 = ±2√−2𝜆𝜇(𝜂 − 𝜌);       (3.2.11)   

Operating the values available in Eqs. (3.2.10)-(3.2.11) into Eq. (3.2.9) yields the following 
expressions for chosen solutions: 

𝑢1(𝜉) = ±𝑒𝑖𝑘𝜉 × √
2(𝜂−𝜌)

𝜎
𝜆(𝐷𝜉

𝛼𝐺/𝐺2),     (3.2.13)  

where = ±√−2𝜆𝜇 , 𝜉 = 𝑥 + 𝑦 + (±2√−2𝜆𝜇(𝜂 − 𝜌))
1/𝛼

𝑡. 

𝑢2(𝜉) = 𝑒𝑖𝑘𝜉 ×
√2(𝜂−𝜌)

𝜎
{±𝜏1𝜇∓𝜏0𝜆(𝐷𝜉

𝛼𝐺/𝐺2)}

𝜏0+𝜏1(𝐷𝜉
𝛼𝐺/𝐺2)

,     (3.2.14) 

where = ±√−2𝜆𝜇 , 𝜉 = 𝑥 + 𝑦 + (±2√−2𝜆𝜇(𝜂 − 𝜌))
1/𝛼

𝑡. 

Eq. (3.2.13) and Eq. (3.2.14) along with Eqs. (2.2.8)-(2.2.10) provide the following exact 
solutions: 

𝑢1
1,2(𝜉) = ±𝑒𝑖𝑘𝜉√

2𝜇𝜆(𝜂−𝜌)

𝜎
×

𝐴𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼+𝐵𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

𝐵𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼−𝐴𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼
, 𝜆𝜇 > 0,        (3.2.15) 

where = ±√−2𝜆𝜇 , 𝜉 = 𝑥 + 𝑦 + (±2√−2𝜆𝜇(𝜂 − 𝜌))
1/𝛼

𝑡. 

𝑢1
3,4(𝜉) = ∓𝑒𝑖𝑘𝜉√

2𝜆|𝜆𝜇|(𝜂−𝜌)

𝜎
×

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐵

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)−𝐵
, 𝜆𝜇 < 0,      (3.2.16) 

where = ±√−2𝜆𝜇 , 𝜉 = 𝑥 + 𝑦 + (±2√−2𝜆𝜇(𝜂 − 𝜌))
1/𝛼

𝑡. 

𝑢1
5,6(𝜉) = ∓𝑒𝑖𝑘𝜉√

2(𝜂−𝜌)

𝜎
×

𝐴𝛼

𝐴𝜉𝛼+𝐵𝛼
, 𝜇 = 0, 𝜆 ≠ 0,    (3.2.17) 
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where = ±√−2𝜆𝜇 , 𝜉 = 𝑥 + 𝑦 + (±2√−2𝜆𝜇(𝜂 − 𝜌))
1/𝛼

𝑡. 

𝑢2
7,8(𝜉) = 𝑒𝑖𝑘𝜉 ×

√2(𝜂−𝜌)

𝜎
{±𝜏1𝜇∓𝜏0√𝜆𝜇×

𝐴𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼+𝐵𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

𝐵𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼−𝐴𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼
}

𝜏0+𝜏1√𝜇/𝜆×
𝐴𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼+𝐵𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

𝐵𝑐𝑜𝑠√𝜆𝜇𝜉𝛼/𝛼−𝐴𝑠𝑖𝑛√𝜆𝜇𝜉𝛼/𝛼

, 𝜆𝜇 > 0,       (3.2.18) 

where = ±√−2𝜆𝜇 , 𝜉 = 𝑥 + 𝑦 + (±2√−2𝜆𝜇(𝜂 − 𝜌))
1/𝛼

𝑡. 

𝑢2
2(𝜉) = 𝑒𝑖𝑘𝜉 ×

√2(𝜂−𝜌)

𝜎
{±𝜏1𝜇±𝜏0√𝜆|𝜆𝜇|×

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐵

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)−𝐵
}

𝜏0−𝜏1√|𝜆𝜇|/𝜆×
𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐵

𝐴𝑠𝑖𝑛ℎ(2√𝜆𝜇𝜉𝛼/𝛼)+𝐴𝑐𝑜𝑠ℎ(2√𝜆𝜇𝜉𝛼/𝛼)−𝐵

, 𝜆𝜇 < 0, (3.2.19) 

where = ±√−2𝜆𝜇 , 𝜉 = 𝑥 + 𝑦 + (±2√−2𝜆𝜇(𝜂 − 𝜌))
1/𝛼

𝑡. 

The above achieved solutions are compared with the existing results in the literature which 
shown the novelty of our results (Rizvi et al., 2017). 

GRAPHICAL REPRESENTATIONS OF THE OBTAINED SOLUTIONS 

The solutions furnished above to the suggested equations are brought out graphically for 
their physical appearances. The outlined solitons take different shape such as kink, bell, 
cuspon, peakon, periodic etc. For simplicity, we display few graphs as follows: 
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CONCLUSIONS 

We aim to construct exact analytic solutions to the space-time fractional nonlinear 
Schrodinger equation and the (2+1)-dimensional time-fractional nonlinear Schrodinger 
equation by making use of the recently established rational (𝐷𝜉

𝛼𝐺/𝐺2)-expansion method. 

Consequently, three type’s soliton solutions such as hyperbolic function, trigonometric 
function and rational function have been gained which are different from those of literature. 
The obtained solutions are outlined graphically to depict nonlinear complex physical 
phenomena arise in applied mathematics, mathematical physics and engineering. The 
performance of the employed method is claimed to be used for further research relating to 
the nonlinear models.   
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