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ABSTRACT 

Efforts are currently on going on the physics of photo electrics in methyl 
ammonium lead halide perovskites to unveil the secret of its success in 
photovoltaics. Since carrier concentration depends on impurity, temperature and 
other parameters of a semiconductor, herein, an attempt has been made address 
the relationship between these parameter and carrier concentrations. It was found 
out that the conventional band edge at 1.58 eV responsible for presenting a blue-
shift depends on thickness, temperature and carrier concentration. Thus, in this 
work, the intrinsic carrier concentration was taken as the number of electrons and 
it was shown that the observed unusual optical band edge in CH3NH3PbI3 
perovskite bulk thin films is about 1.58eV. It was concluded that the band edge is 
beneficial for photo electric effect by making use of its inhibited radiative 
recombination. 
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INTRODUCTION 

Thermal excitation of a carriers from the valence band to the conduction band creates 
free carriers in both HOMO and LUMO bands (Carlos and Ignacio, 2008; D’Innocenzo 
et al., 2014; Eames et al., 2015; Habisreutinger et al., 2014; Hao et al., 2014; Haruyama et 
al., 2014) of both organic and hybrid semiconductors. Its concentration is referred to as 
intrinsic carrier concentration, denoted by ni (Habisreutinger et al., 2014; Hao et al., 
2014; Haruyama et al., 2014; Jeon et al., 2014; Juarez-Perez et al., 2014; Kasha, 2012).  The 
number of carriers in the valence band in intrinsic material depends on the band gap of 
the material and the exposed temperature. A large band gap makes it more difficult for 
a carrier to be thermally excited across it meaning that increasing the temperature 
makes it more likely that an electron will be excited into the conduction band. This 
implies that the photo sensitivity and quantum efficiency of an optical device depends 
on carrier concentration and the operating temperature (Wilczek, 2014).  
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THEORY 

Methyl ammonium lead tri-iodide is a hybrid perovskites. It forms a crystal structure 
of the type ABX3 with an organic, (A = CH3NH+3), site cation contained within an 
inorganic framework (BX3 = PbI3) of the corner-sharing octahedral and in which 
CH3NH+3 cause a unique but varying chemical and physical properties. Substitutions 
effected by Pb2+ ion leads to the formation of a double pair perovskite nature (Mosconi 
et al., 2013; Oga et al., 2014; Pekola et al., 2013; Roche et al., 2013; Roy and Bagchi, 1994; 
Zhao and Zhu, 2014). Thus using the Fermi-Dirac distribution gives the probability that 
an energy level, ε, will be occupied by an electron: 
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and the number of electrons excited to the conduction band at given temperature, T we 
apply the Boltzmann Distribution (Habisreutinger et al., 2014; Hao et al., 2014; 
Haruyama et al., 2014), 
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By simplifying Eq. (1) we obtain; 

 












 
















Tk

ETkm
n

B

cBe 


exp

2
2

2/3

2

*


     (3) 

By solving and simplifying Eq. (3) gives the intrinsic concentration ni of conduction 
electrons as equal concentration pi of holes (Juarez-Perez et al., 2014; Kasha, 2012; Lang 
et al., 2014; Memming and Bahnemann, 2015; Minemoto and Murata, 2014; Mosconi et 
al., 2013; Oga et al., 2014): 








 


kT

W
NNpn VCii

2
exp      (4) 

Using simplification and material parameters, Eq. (4), can be reduced into Eq. (5) and 
Eq. (6) respectively for conduction and valence band respectively as (Carlos and 
Ignacio, 2008; D’Innocenzo et al., 2014; Eames et al., 2015); 
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where, CN  is the effective density of states in the conduction band, VN  is the effective 

density of states in the valence band, W  is the gap energy, k  is the Boltzmann’s 
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constant, T  is the absolute temperature, h  is the Plank’s constant, nm  is the effective 

mass of an electron, and pm  is the effective mass of a hole. Therefore, the concentration 

nn  of electrons responsible for conduction in a donor-type at low temperatures can be 

expressed as (Jeon et al., 2014; Juarez-Perez et al., 2014; Kasha, 2012; Lang et al., 2014; 
Memming and Bahnemann, 2015; Minemoto and Murata, 2014; Mosconi et al., 2013); 
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where DN  is donor concentration, DW  – ionisation energy of donor atom and is less 

than sT . Thus, at medium temperatures, the concentration nn  equals concentration of 

donors (Jeon et al., 2014; Juarez-Perez et al., 2014; Kasha, 2012; Lang et al., 2014; 
Memming and Bahnemann, 2015; Minemoto and Murata, 2014; Mosconi et al., 2013): 

Dn Nn  .        (8) 

At high temperatures, an n-type semiconductor has properties of an intrinsic 

semiconductor; the concentration of intrinsic carriers exceeds nn . Then, temperatures 

sT  and iT can be easily be expressed as; 
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The concentration of holes in an acceptor-type semiconductor can be determined using 

Eq. (1) to Eq. (6) by substituting VN  for CN , AN  as well as acceptor concentration in 

place of DN respectively; hence the concentration of minority carriers is calculated 

using mass action law (Memming and Bahnemann, 2015): 

22
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It becomes then clear The Fermi level in an n-type semiconductor in the extrinsic range 
is always over the middle of the forbidden band. Its distance from the bottom of the 
conduction band is given by (Lang et al., 2014); 
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Therefore, using Eq. (5), Eq. (6), Eq. (12) and Eq. (13), the  Fermi level in a p-type 
semiconductor in the extrinsic range is found to below the middle of the forbidden band 
while its distance from the top of the valence band is given by (Lang et al., 2014); 
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CH3NH3PbI3 transits from orthorhombic to tetragonal at temperature of 162 K while it 
transits into cubic structure at approximately 328 K (Habisreutinger et al., 2014; 
Mosconi et al., 2013; Pekola et al., 2013). When such transitions take place, the effective 
mass of both electrons and holes in these three states is approximate less than 0.2me, 
with a carrier mobility of less than 100 cm2 V−1 s−1. Therefore, since CH3NH3PbI3 has a 
higher dielectric constant with low effective mass, there is a higher tendency to obey 
the hydrogen atomic model (Jeon et al., 2014; Juarez-Perez et al., 2014; Kasha, 2012; 
Lang et al., 2014; Memming and Bahnemann, 2015; Minemoto and Murata, 2014) 
represented basically in Eq. (14); 
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where 
om

m*

 is the effective mass ratio, 𝜖0 is the static dielectric constant, and n is an 

integer quantum number for the given energy level in Hartrees. 

RESULTS AND DISCUSSIONS  

Numerical calculations were carried out and a summary of the results obtained are 
presented in Tables 1. It can be observed that in some cases, the exact value of the 
intrinsic carrier concentration in CH3NH3PbI3 are similar or equal to the values obtained 
by modeling in literature or by other approaches like computational analysis (Carlos 
and Ignacio, 2008; Eames et al., 2015; Jeon et al., 2014; Juarez-Perez et al., 2014; 
Memming and Bahnemann, 2015). At 300 K, the approximate accepted value for the 
intrinsic carrier concentration was ni, is 1.101 ×1029 cm-3 which varied to 9.976 ×1029about 
at 169 K which is below room temperature. Values were calculated or obtained by using 
computation model formula as given by Altermatt and Misiakos (Mosconi et al., 2013); 
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Table 1: Calculated parameters of CH3NH3PbI3 thin films 

Average 
thickness 

(nm) 

Temp. 
(K) 

Carrier 
concentration 

(ni)×10n 

Band  
gap 
(eV) 

Mobility 
(cm2V-1S-1) 

Diffusion 
length 
(μm) 

Auger 
recombination  

rate  (cm6S-1) 

223 400 5.472 ×1012 1.48 20 1.0 1.130 ×1029 

219 375 1.514 ×1012 1.49 23 1.3 1.121 ×1029 

209 350 3.521 ×1011 1.50 28 1.7 1.113×1029 

194 325 6.666 ×1010 1.51 36 2.1 1.112 ×1029 

188 300 9.696 ×109 1.53 42 2.6 1.101 ×1029 

176 275 1.013 ×109 1.56 45 3.0 9.997 ×1029 

169 250 6.888 ×107 1.58 46 3.1 9.976 ×1029 



Engineering International, Volume 7, No. 2 (2019)                                                                                                                                          ISSN 2409-3629 

Asian Business Consortium | EI                                                                                                                                                         Page 71 

 

CONCLUSION 

It was concluded that impurity atoms in CH3NH3PbI3 enter the structure by either 

substitution of the lattice atoms of Pb or by fitting into interstitial sites in either 
tetrahedral, octahedral, or cubic interstices directly. As a result, they modify crtain 
optical and electrical parameters of methyl ammonium iodide. In general, it was 
suggested that, atoms which have similar size to the host structure atoms occupy the 

substitutional sites rather than interstitial sites in CH3NH3PbI3 samples and concluded 
that some dopants used on CH3NH3PbI3 occupy substitutional sites. 
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