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ABSTRACT 

A rigorous theoretical investigation has been made on nonlinear dust-ion-
acoustic (DIA) solitary waves (SWs) in a multi-ion dusty plasma system, 
consisting of inertial positive and negative ions, and arbitrary charged 
stationary dust. The dust particles have been considered as arbitrarily (either 
positively or negatively) charged in order to observe the effects of dust 
polarity on the DIA SWs. Three different approaches (K-dV (Korteweg-de 
Vries), mK-dV (mixed K-dV), and Gardner) have been employed to analysis 
the entire regime. The reductive perturbation method has been employed in 
all these three approaches. Using reductive perturbation method, we first 
derive K-dV equation which let us to analyze both types (bright and dark) of 
solitons, but, in a very limited region. After that mK-dV equation has been 
derived which let us analyze bright soliton for a large region, but cannot show 
the dark soliton. Finally, we have derived the Gardner equation employing 
the same method, through which we were able to analyze both the bright and 
dark solitons for a large region. We also employed the modified Gardner (mG) 
equation to observe the effects of nonplanar geometry as well as time 
evolution of SWs. It has been found that both the positive and negative 
solitons depend on the ion number density of the ions, dust polarity, 
temperature, as well as time scale. It is also shown that the properties of the 
nonplanar (cylindrical and spherical) DIA-GSs are significantly different from 
those of the one dimensional planar ones. 
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INTRODUCTION 

Now a days the nonlinear structures (viz., solitary waves, shock structure, and double 
layers) associated with the DIA waves have received a great deal of interest. A number of 
investigations have been made on these nonlinear structures (Fortov et al., 2005; Ishihara, 
2007; Shukla and Eliasson, 2009; Morfill and Ivlev, 2009; Lonngren, 1983; Nakamura and 
Sharma, 2001; Nakamura et al., 1999; Luo et al., 1999; Charles, 2007), particularly DIA 
solitary waves (SWs) (Nakamura and Sharma, 2001; Bharuthram and Shukla, 1992; Popel 
and Yu, 1995; Mamun and Shukla, 2002; Shukla and Mamun, 2003; Popel et al., 2003), shock 
waves (Nakamura et al., 1999; Luo et al., 1999; Shukla, 2000; Popel et al., 2001; Mamun and 
Shukla, 2002; Mamun et al., 2009; Duha and Mamun, 2009), and double layers (DLs) 
(Mamun et al., 2009; Alinejad and Mamun, 2010; Ghosh and Bharuthram, 2008; 
Roychoudhury and Chatterjee, 1999). But most of these investigations (Nakamura and 
Sharma, 2001; Nakamura et al., 1999; Luo et al., 1999; Bharuthram and Shukla, 1992; Popel 
and Yu, 1995; Mamun and Shukla, 2002; Shukla and Mamun, 2003; Popel et al., 2003; Shukla, 
2000; Popel et al., 2001; Mamun and Shukla, 2002; Mamun et al., 2009; Duha and Mamun, 
2009; Mamun et al., 2009; Alinejad and Mamun, 2010; Ghosh and Bharuthram, 2008; 
Roychoudhury and Chatterjee, 1999) are concerned with single ion plasma species. 
However, the presence of the negative ions, which occur in both space (Sauer et al., 1994; 
Sauer et al., 1996; Sauer et al., 2003) and laboratory plasmas (Jacquinot, et al., 1977; 
Weingarten et al., 2001; Watanabe et al., 1978; Nakamura et al., 1997), significantly modify 
the properties of the linear (Lonngren, 1983) and nonlinear ion-acoustic waves in a plasma 
system (Lonngren, 1983; Nakamura, 1982). Therefore, the properties of ion-acoustic solitary 
waves in a dust-free plasma with negative ions have been investigated both theoretically 
and experimentally by many authors (Das and Tagare, 1975; Watanabe, 1984; Tajiri and 
Tuda, 1985; Ludwig et al., 1984; Nakamura and Tsukabayashi, 1984; Cooney et al., 1991). 
Later, the existence of ion-acoustic shocks has also found (Luo et al., 1998). It has been 
observed that the collective interactions in positive ion-negative ion plasmas (Kim and 
Merlino, 2007) have potential applications in natural and technological environments 
including the D-region of the Earths ionosphere, the Earths mesosphere, the solar 
photosphere, and the microelectronics plasma processing reactors. However, dusty multi-
ion plasma has also devoted significant attention because of its vital role in understanding 
different types of collective processes in space environments (Shukla, 2001; Mendis and 
Rosenberg, 1994; Tsytovich et al., 2002) as well as in laboratory devices (Fortov et al., 2005; 
Merlino et al., 1998; Homann et al., 1997; Morfill et al., 2003). The presence of a fraction of 
negative ions in a dusty plasma changes the plasma composition and plasma transport 
properties (Klumov et al., 2003), as well as the dust charges (Mamun and Shukla, 2003; Kim 
and Merlino, 2006; Merlino and Kim, 2006). Some works have been also done on DIA 
solitary waves (Sayed et al., 2008; Verheest et al., 2008) and shock waves (Mamun et al., 2009; 
Duha, 2009) in dusty multi-ion plasma. However, all of these works (Sayed et al., 2008; 
Verheest et al., 2008; Mamun et al., 2009; Duha, 2009) are limited to planar geometry and 
too solitary and shock structures. Since the waves observed in laboratory devices are 
certainly not bounded to one-dimension, the investigations made on 1D (planar) nonlinear 
DIA waves, may not be appropriate for realistic space or laboratory dusty plasma situations. 
Moreover, in all of these investigations (Sayed et al., 2008; Verheest et al., 2008; Mamun et 
al., 2009; Duha, 2009), authors have used the K-dV or Burgers equations, which are not valid 
for a parametric regime corresponding to A = 0 or A ∼ 0 (where A is the coefficient of the 
nonlinear term of the K-dV or Burger equation (Mamun and Shukla, 2002; Mamun and 
Shukla, 2009a; Mamun and Shukla, 2009b), and A ∼ 0 means here that A is not equal 0, but 
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A is around 0). This is because, the latter gives rise to infinitely large amplitude structures 
which break down the validity of the reductive perturbation method (Washimi and Taniuti, 
1966). To the best of our knowledge, no attempt has been made on the entire regime of the 
planar DIA SWs as well as nonplanar DIA SWs in multi-ion plasma system. Therefore, in 
our present work we have employed three different approaches e.g. K-dV (Korteweg-de 
Vries), mK-dV (mixed K-dV), and Gardner (Deeba et al., 2012) to analysis the entire regime. 
In all these three approaches, the reductive perturbation method has been employed. At 
first, we derive K-dV equation which let us to analyze both types (bright and dark) of 
solitons, but, in a very limited region. After that mK-dV equation has been derived which 
let us analyze bright soliton for a large region, but cannot show the dark soliton. Then, 
finally we derive the Gardner equation, through which we analyze both the bright and dark 
solitons for a large region. We also employed the modified Gardner (mG) equation (Deeba 
and Mamun, 2011; Mamun and Deeba, 2012) to observe the effects of nonplanar geometry 
as well as time evolution on SWs.  

GOVERNING EQUATIONS 

In our present work, the nonlinear propagation of the DIA waves in an unmagnetized multi-
ion dusty plasma system (consisting of inertial positive and negative ions, and arbitrary 
charged stationary dust) has been considered. At equilibrium, we have Zpnp0 = Znnn0 + lZdnd0, 
where np0 (nn0) nd0 is the positive ion (negative ion) dust number density at equilibrium, Zp 
(Zn) Zd is the number of charged particles residing onto the unit grain surface of positive ion 
(negative ion) dust, and l is the polarity of the dust particles. When l = 1, the dust particles 
are negatively charged and when l = −1, the dust particles are positively charged. The 
dynamics of such low velocity, nonplanar DIA waves are governed by 

∂np/∂t+1/rν∂/∂r(rνnpup) = 0, (1) 

∂nn/∂t+1/rν∂/∂r(rνnnun) = 0,  (2) 

np∂up/∂t+ npup∂up/∂r+ np∂ϕ/∂r+∂np/∂r= 0,            (3) 

nnµ∂un/∂t+ nnunµ∂un/∂r −nnβ∂ϕ/∂r+ σ∂nn/∂r= 0,       (4) 

1/rν∂/∂r(rν ∂ϕ/∂r)= −ρ,               (5)  

ρ = [np −(1−α)nn −lα],                  (6)  

where ν is the co-efficient of geometry. ν = 0 represents an 1D (one dimensional) planar 
geometry, while ν = 1 (2) represents a nonplanar cylindrical (spherical) geometry. np (nn) is 
the number density of positive (negative) ion normalized by np0 (nn0); up (un) is the fluid 
speed positive (negative) ion normalized by Cp; ϕ is the electrostatic wave potential 
normalized by (Tp/Zpe); mp (mn) is the mass of positive (negative) ion; Tp (Tn) is the 
temperature of positive (negative) ion; Zp (Zn) Zd is the number of charged particles residing 
onto the unit grain surface of positive ion (negative ion) dust; e is the magnitude of the 
charge of an electron; np0 (nn0) nd0 is the positive ion (negative ion) dust number density at 
equilibrium; r is the space variable normalized by λDp; t is the time variable normalized by 
ωpp

−1 ; ωpp = √(4πe2Zp
2np0/mp); Cp = λDpωpp; µ = mn/mp; β = Zn/Zp; σ = Tn/Tp; α = Zdnd0/Zpnp0; 

and l is 1(−1) for negative (positive) dust. 
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K-DV SOLITON 

Considering ν = 0 will give us the model equations corresponds to planar (1D) geometry. 
To obtain the DIA K-dV equation, we introduce the stretched coordinates: 

ζ = ϵ1/2 (r−Vpt), τ = ϵ3/2t,                   (7)  

where Vp is the DIA wave phase speed (ω/k), and ϵ is a smallness parameter measuring the 
weakness of the dispersion (0 < ϵ < 1). As we only consider the case, ν = 0 here, r is 
representing the space variable in only one dimension. We expand all the dependent 
variables (ni, ui, and ψ) in power series of ϵ to obtain their equilibrium and perturbed parts. 
Then we have the following set of equations;  

ns = 1 + ϵns
(1) + ϵ2ns

(2) + ϵ3n(3) s +···,             (8) 

us = 0 + ϵus
(1) + ϵ2us

(2) + ϵ3us
(3) +···,             (9)  

ψ = 0 + ϵψ(1) + ϵ2ψ(2) + ϵ3ψ(3) +···,            (10) 

ρ = 0 + ϵρ(1) + ϵ2ρ(2) + ϵ3ρ(3) +···,            (11) 

where ϵ is a small parameter measuring the weakness of the dispersion, and np 
(1) , nn 

(1) , up 

(1) , un 
(1) , and ψ(1) are the perturbed part of np, nn, up, un, and ψ respectively. To the lowest 

order in ϵ, (1)-(6) give 

u p 
(1) ={ Vp/(V p

 2 −1)}Ψ,               (12) 

np 
(1) = (1/(Vp

2 −1)}Ψ,            (13) 

un 
(1) ={Vpβ/(σ−µVp

2 )}Ψ,           (14) 

nn 
(1) ={β/(σ−µVp 

2 )}Ψ,             (15) 

ρ(1) = 0,               (16) 

VP
 2 =(ω/k)2 = (1 + Cσ)/(1 + Cµ) ,           (17) 

where C = 1/β(1−lα) and Ψ = ψ(1). Equation (17) represents the linear dispersion relation for 
the DIA waves. This clearly indicates that the DIA wave phase speed (Vp) depends on only 
the parameters l, α, β, σ, and µ. To the next higher order of ϵ, we obtain a set of equations, 
which, after using (12)-(17), can be simplified as  

w∂np
(2)/∂ζ = 2Vp∂Ψ/∂τ + {(2Vp 

2 + w)/w2}Ψ ∂Ψ/∂ζ + ∂ψ(2)/∂ζ,   
               (18) 

∂nn
(2)/∂ζ = − (2µβVp/z)∂Ψ/∂τ+(k/z3)Ψ ∂Ψ/∂ζ + (β/z) ∂ψ(2)/∂ζ,   

              (19) 

∂2Ψ/∂ζ2 = [np 
(2) −(1−lα)nn

(2) ].           (20) 

where w = (Vp
2 − 1), z = (σ − µVp

2 ) and k = (β2z − 2µβ2Vp 
2 ). Now combining (18)-(20), we 

obtain an equation of the form: 

∂Ψ/∂τ + AΨ∂Ψ/∂ζ + B∂3Ψ/∂ζ3 = 0,          (21) 

where 

A =(2Vp 2/w3 + 1/w2 − β2(1−lα)/z2 + R)B,           (22) 

B =(2Vp/w + 2µβVp(1−lα)/z )−1 ,           (23) 
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R = 2µβ2Vp
2(1−lα)/z3.            (24) 

Equation (21) is known as K-dV (Korteweg-de Vries) equation. The stationary localized 
solution of (21) is given by 

Ψ = ψmsech2[(ζ −U0τ)/δ],             (25) 

where the amplitude ψm and the width δ are given by ψm = 3U0/A and δ =√4B/U0, 
respectively. U0 is the mach number. As U0 > 0, (25) clearly indicates that (i) small amplitude 
SWs with Ψ > 0, i.e. positive soliton exists if A > 0, (ii) small amplitude SWs with Ψ < 0, i.e. 
negative soliton exists if A < 0, and (iii) no solitons can exist around A = 0. 

Figure (1-3) shows the variation of the amplitude of positive (negative) K-dV soliton with α 
when the system contains negative dust. The amplitude of the positive (negative) K-dV 
solitons increases (decreases) with α. Whereas figures 2 and 4 shows the same variations 
when the system contains positive dust. For positive dust, the amplitude of the positive 
(negative) K-dV solitons decreases (increases) with α. From figure 3, it is clear that no finite 
amplitude K-dV soliton can exists at α = 1. 

FIG. 1: Showing the variation of the positive K-dV soliton 
with α at U0 = 0.01, β = 1, σ = 1, and µ = 0.1, when the system contains negative dust. 

FIG. 2: Showing the variation of the positive K-dV soliton with α 
at U0 = 0.01, β = 1, σ = 1, and µ = 0.1, when the system contains positive dust. 

 

FIG. 3: The variation of the amplitude of negative K-dV soliton with 
α at U0 = 0.01, β = 1, σ = 1, and µ = 10, when the system contains negative dust. 
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FIG. 4: The variation of the amplitude of negative K-dV soliton with 
α at U0 = 0.01, β = 1, σ = 1, and µ = 10, when the system contains positive dust. 

Figures 4 and 5 show the relations between ψm, β, and σ. The amplitude of positive K-dv 
soliton increases with σ, but decreases with β. Whereas, the amplitude of negative K-dV 
soliton decreases with σ, but increases with β until β ∼ 2.5. 

 

FIG. 5: The variation of the amplitude of K-dV soliton with β and σ at 
U0 = 0.01, µ = 0.1. 

 

 

FIG. 6: The variation of the amplitude of negative K-dV soliton with β and σ at U0 = 0.01, µ 
= 10. 

MK-DV SOLITON 

The K-dV equation is the result of the second order calculation of the ϵ. For plasmas with 
more than two species, there can arise a situation, where A vanishes at µ = µc, and (25) fails 
to describe nonlinear evolution of perturbation. So, higher order calculation is required at µ 
= µc. From the third order calculation, which utilizes another set of stretched coordinate, a 
modified K-dV (mK-dV) equation is obtained to describe the nonlinear evolution near this 
critical parameter. The stretched coordinates for mK-dV equation is  

ζ = ϵ(r−Vpt), τ = ϵ3t.            (26) 

By using (26) in (1)-(6), we find the same values of n p
(1) , nn

(1), up
(1) , u n

(1) , and Vp, as like as 
that of K-dV. To the next higher order of ϵ, we obtain a set of equations, which, after using 
the values of n p

(1) , nn
(1), up

(1) , u n
(1) , and Vp, can be simplified as 

np
 (2) =[Vp 

2/w3 + 1/2w2]Ψ2 + [1/w]ψ(2),          (27) 

n n
 (2) =[β2/2z2 −µβ2Vp

 2/z3]Ψ2 + [β/z]ψ(2),           (28) 
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up
(2) =[Vp

3 /w3 – Vp/2w2]Ψ2 + [Vp /w] ψ(2),          (29) 

u n 
(2) = −[Vpβ2/2z2 + µβ2Vp 

3/z3 ]Ψ2 + [Vpβ/z]ψ(2),   (30) 

ρ(2) = ½ AΨ2 = 0.              (31) 

where 

A =(2Vp 
2 /w3 + / w2 − β2(1−lα)/z2+ R). 

We take the next higher order of ϵ, and get a set of equations:  

∂np
(1)/∂τ − Vp∂np

(3)/∂ζ + ∂up
(3)/∂ζ + ∂/∂ζ (np

(1) up
(2) ) + ∂/∂ζ (np

(2)up
(1) )= 0,   

              (32)  

∂nn
(1)/∂τ − Vp ∂nn

(3)/∂ζ + ∂un
(3)/∂ζ + ∂/∂ζ (nn

(1)un
(2)) + ∂/∂ζ (nn

(2)un
(1) )= 0,   

              (33)  

∂up 
(1)/∂τ −Vp∂up

(3)/∂ζ − Vpnp
(1) ∂up

(2)/∂ζ − Vpnp
(2) ∂up

(1)/∂ζ + ∂/∂ζ(up
(1)up

(2))+ np
(1)up

(1) ∂up
(1)/∂ζ 

+ np
(1) ∂ψ(2)/∂ζ + np

(2) ∂Ψ/∂ζ + ∂ϕ(3)/∂ζ + ∂np
(3)/∂ζ = 0,           (34) 

∂un
(1)/∂τ −Vp ∂un

(3)/∂ζ −Vpnn
(1)∂un

(2)/∂ζ −Vpnn
(2)∂un

(1)/∂ζ + nn
(1)un

(1) ∂un
(1)/∂ζ + ∂/∂ζ(un

(1) un
(2) ) + 

(σ/µ)∂nn
(3)/∂ζ – β/µ(nn

(1) ∂ψ(2)/∂ζ −nn
(2) ∂Ψ/∂ζ ) + β/µ ∂ϕ(3)/∂ζ) = 0,   

              (35) 

∂2Ψ/∂ζ2+ np
(3) −(1−lα)nn

(3) = 0.            (36) 

Now, combining (32)-(36), and using the values of np
(1) , np

(2), nn
(1) , nn

(2) , up
(1) , up

(2) , un
(1) , un

(2), 
and ρ(2) in (32)-(36), we obtain an equation of the form: 

∂Ψ/∂τ + abΨ2∂Ψ/∂ζ + b∂3Ψ/∂ζ3= 0,           (37) 

where 

a = {1/(2w5)} (m115Vp
4 −m24Vp

2 + m3),           (38) 

m1 = 1−(β2µ2/C),             (39) 

m2 = 1−(β2µσ/C),             (40) 

m3 = 1−(β2σ2/C),             (41) 

b = [w2/{2Vp(1 + cµ)}] (1−µ)−3 2 .           (42) 

Equation (37) is known as mK-dV equation. But this equation allows us to study only one 
type of solitons. In this equation the dispersion term (viz. Ψ ∂Ψ/∂ζ) is absent, but instead of 
this, there is a dissipation term (Ψ ∂Ψ/∂ζ). The stationary localized solution of (37) is, 
therefore, can be directly given by 

Ψ = ψmsech[ξ/∆],              (43) 

where the amplitude ψm and the width ∆ are given by ψm =√(6U0/ab) and ∆ = 1/(ψm√γ), 
and γ = a/6. 
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FIG. 7: The variation of the mK-dV soliton with α at U0 = 0.01, β = 1, σ 
= 2, and µ = 0.1 when the system contains negative dust. 

FIG. 8: The variation of the mK-dV soliton with α at U0 = 0.01, β = 1, σ 
= 2, and µ = 0.1 when the system contains positive dust, instead of negative dust. 

 

FIG. 9: The variation of the amplitude of mK-dV soliton with σ and β at α = 0.5 and µ = 0.1 
when the system contains negative dust. 

FIG. 10: The variation of the amplitude of mK-dV soliton with σ and 
µ at α = 0.5 and β = 1 when the system contains negative dust. 

Figure 7 shows the variation of the mK-dV solitons with α with negative dust and figure 8 
shows the variation of the mK-dV solitons with α with positive dust. Figure 9 shows the 
variation of the amplitude of the mK-dV soliton with σ and β. Figure 10 shows the variation 
of the amplitude of the mK-dV soliton with σ and µ. From figures 7-10, we may conclude: 

i. The amplitude and width of mK-dV soliton increase with α. ii.With the increase of 
temperature of the negative ion, the amplitude of mK-dV soliton also increases. But with 
the increase of the mass of the negative ion, the amplitude decreases. iii. The amplitude of 
mK-dV soliton first decreases with β, but after the point β = 2.5, it begins to increase. 

GARDNER SOLITON 

It is obvious from (31) that A = 0 since ψ ≠ 0. One can find that A = 0 at its critical value µ 
= µc (which is a solution of A = 0). The solution of A = 0 for µ is gives by 

µ = µc = (2 + 3σC −σβC2)/(1−3βC −2σβC2).          (44) 
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At µ = µc, A = 0. So, for µ around its critical value (µc), i.e. for |µ−µc| = ϵ corresponding to 
A = A0, we can express A0 as  

A0 ≃ r(∂A/∂µ)µ=µc |µ−µc| = sϵ.            (45) 

where |µ−µc| is a dimension less and small parameter, and can be taken as the expansion 
parameter ϵ, i.e. |µ− µc|≃ ϵ, and 

s = 6rC2C3/C2C1
3 + 3rβC2C3

2/CC1
3 + 6rβµcC2C3/C1

3 − 3rC4C3
2/C2C1

3 + 3rC2C3
2 /C3C1

4 + 
3rβµcC2C3

2 /CC1
4  − rC4C3

3/C3C1
4 ,      (46) 

where C1 = (σ −µc), C2 = (1 + Cσ), C3 = (1 + Cµc), C4 = (1 + C2βσ), r = 1 for µ > µc, and r = −1 
for µ < µc. So, ρ(2) can be expressed as 

ϵ2ρ(2) ≃ ϵ3 (1/2) sψ2,             (47) 

which, therefore, must be included in the third order Poisson’s equation. For the first two 
lowest orders of ϵ, we get the same set of equations as like as mK-dV (until eq. (31)). To the 
next higher order of ϵ, we obtain a set of equations: 

∂np 
(1)/∂τ −Vp∂np 

(3)/∂ζ + ∂up
(3)/∂ζ + ∂/∂ζ(np

(1) up
(2) )+ ∂/∂ζ(np

(2) up
(1) )= 0,   

              (48) 

∂nn
(1)/∂τ −Vp ∂nn

(3)/∂ζ + ∂un
(3)/∂ζ + ∂/∂ζ(nn

(1) un
(2))+∂/∂ζ(nn

(2) un
(1) )= 0,   

                  (49) 

∂up
(1)/∂τ −Vp∂up

(3)/∂ζ −Vpnp
(1) ∂up

(2)/∂ζ −Vpnp
(2)∂up

(1)/∂ζ + ∂/∂ζ(up
(1) up

(2) )+ np
(1) up

(1) ∂up
(1)/∂ζ+ 

np
(1) ∂ψ(2)/∂ζ + np

(2) ∂Ψ/∂ζ + ∂ϕ(3)/∂ζ + ∂np
(3)/∂ζ = 0,     

              (50) 

∂un
(1)/∂τ −Vp∂un

(3)/∂ζ −Vpnn
(1) ∂un

(2)/∂ζ −Vpnn
(2) ∂un

(1)/∂ζ + σ/µ ∂nn
(3)/∂ζ – β/µ ∂ϕ(3)/∂ζ + 

∂/∂ζ(un
(1)un

(2) )+ nn
(1) un

(1) ∂un
(1)/∂ζ − nn

(1) (β/µ) ∂ψ(2)/∂ζ − nn
(2) (β/µ) ∂Ψ/∂ζ = 0,   

              (51) 

∂2ψ/∂ζ2+ np
(3) −(1−lα)nn

(3) + ( s/2 ) Ψ2 = 0.           (52) 

 

Now, combining (48)-(52), we obtain an equation of the form: 

∂Ψ/∂τ + sbΨ ∂Ψ/∂ζ + abΨ2 ∂Ψ/∂ζ + b ∂3Ψ/∂ζ3 = 0,    (53) 

where 

a = ( 1/2w5) (m115Vp
4 −m24Vp

2 + m3),           (54) 

m1 = 1− (β2µ2/C),             (55) 

m2 = 1− (β2µσ/C),             (56) 

m3 = 1−( β2σ2/C),             (57) 

b = [w2/{2Vp(1 + cµ)}] (1−µ) −3/2.           (58) 

Equation (53) is known as Gardner equation or mixed mK-dV equation. The Gardner 
equation contains both Ψ2 and Ψ3 term, i.e., it has both types of solitary wave solution, which 
are valid around µ = µc. These two terms also give rise the option to have a double layer 
(DLs) wave solution of this equation. But as in this paper we are only interested to analyze 
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the SWs solution, we will not look at the DLS solution. The solitary wave solution (Deeba et 
al., 2012; Deeba and Mamun, 2011) of standard Gardner equation is, therefore, given by 

Ψ =[ 1/ψm2 −( 1/ψm2 – 1/ψm1)cosh2(ξ/δ)]−1 ,          (59) 

 where γ = a/6 and ψm = −s/a. 

The GSs amplitude ψm1,2 and width δ are given by  

ψm1,2 = ψm[1 ∓ √(1 + U0/V0) ], 

where 

V0 = s2b/6a, 

U0 = (sb/3) ψm1,2 + (ab/6) ψ2 m1,2, 

δ = 2/√(−γψm1ψm2) = √ (b/U0). 

FIG. 11: An A = 0 curve, showing how µc varies with α and β for σ = 
0.9 in a multi-ion plasma system consisting negatively charged dust. 

 

FIG. 12: An A = 0 curve, showing how µc varies with α and β for σ = 
1.5 in a multi-ion plasma system consisting positively charged dust. 

FIG. 13: The variation of σc with α for β = 0.1 and µ = 0.2. The green line 
corresponds to a multi-ion plasma system consisting negatively charged dust and the red 
dotted line corresponds to a multi-ion plasma system consisting positively charged dust. 

FIG. 14: The variation of amplitude of positive GSs with α at β = 1, σ = 
10, and µ = 1 in a multi-ion plasma system consisting negatively charged dust. 
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FIG. 15: The variation of amplitude of negative GSs with α at β = 1, σ = 10, 
and µ = 1 in a multi-ion plasma system consisting negatively charged dust. 

 

FIG. 16: The variation of amplitude of positive GSs with α at β = 1, σ = 
10, and µ = 4, in a system consisting positive dust. 

 

FIG. 17: The variation of amplitude of negative GSs with α at β = 1, σ = 
1, and µ = 4, in a system consisting positive dust. 

 

FIG. 18: The variation of the amplitude of positive GSs with β at α = 
0.5 at U0 = 0.01, σ = 10, and µ = 1 when the system contains negative dust. 

 

FIG. 19: The variation of the amplitude of negative GSs with β at α = 
0.5, U0 = 0.01, σ = 10, and µ = 1. 
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FIG. 20: The variation of the amplitude of positive GSs with β at α = 
0.5, U0 = 0.01, σ = 1, and µ = 0.1, in a system consisting positive dust. 

 

FIG. 21: The variation of the amplitude of negative GSs with β at α = 
0.5, U0 = 0.01, σ = 1, and µ = 0.1, in a system consisting positive dust. 

Equation (59) represents the SWs solution of Gardner equation. The SWs profile is positive 
if A > 0 and negative if A < 0. Therefore, it can be concluded that positive (negative) SWs 
exist at µ > µc (µ < µc) i.e., j = 1 (j = −1). To find the parametric regimes for which the positive 
and negative SWs exist, we have analytically analyzed A, and obtain A (µ = µc) = 0 surface 
plots for both negative and positive dust. The A (µ = µc) = 0 surface plot for negative 
(positive) dust is shown in fig. 11 (fig. 12). These mean that the positive (negative) SWs exist 
for a set of dusty plasma parameters corresponding to any point which is much above 
(below) the A (µ = µc) = 0 surfaces shown in figures 11 and 12. In one word, the SWs can 
exist either above or below of the surface curve, but no SWs will be found at the surface of 
the A = 0. Because this is the limit (A = 0) for which K-dV types equation breaks down. Our 
success of this model is to analysis the waves around the vicinity of this limit. A = 0 can be 
also solved in terms of σ = σc. 

Fig. 13 shows the variation of σc with different parameter. Figure (14-15) shows the variation 
of the positive (negative) Gardner solitons with α for negative dust. And figure (18-19) 
shows the variation of the GSs with β. From figures (14-19), it has been found that, the 
magnitude of the amplitude of GSs increases with both α and β. Same figures for a system 
consisting positive dust, have been drawn in figures (16-21). It has been found that, the 
amplitude of GSs decreases with both α and β for positive dust. 

NONPLANAR SOLITON 

Now, if we proceed with ν≠0, we will be able to analyze the nonplanar GSs. ν = 1 represents 
a nonplanar cylindrical geometry, whereas, ν = 2 represents a nonplanar spherical geometry. 
To do so, we will introduce the same stretched coordinates as like as mK-dV:  

ζ = ϵ(r−Vpt), τ = ϵ3t, }            (61)  

where ϵ has usual meaning as mentioned before, and Vp (normalized by Ci) is the phase 
speed of the perturbation mode. Following the same procedure and set of equations of 
expansion in power series of ϵ like before, and substitute into the resulting equations [(1)-
(6) expressed in terms of ζ and τ], we get, different sets of equations in various powers of ϵ. 
To the lowest order in ϵ, we obtain the values of up

(1) , np
(1) , un(1) , nn

(1) , ρ(1), and VP
2 as that 
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of k- dV equation. The expression for VP
2 represents the linear dispersion relation for the 

DIA waves propagating in a dusty plasma under consideration. This equation clearly 
indicates that the DIA wave phase speed (Vp) depends not only on l, but also on α, β, σ, and 
µ. To the next higher order in ϵ, we obtain a set of equations, same as that of mK-dV 
equation, (28-32). It is obvious from (32) that A = 0 since ψ≠ 0. To the next higher order of 
ϵ, using the solution of A = 0 at its critical value µ = µc, i.e. eq. (46) and eq. 48, we obtain a 
set of equations: 

∂np
(1)/∂τ −Vp∂np

(3)/∂ζ + ∂up
(3)/∂ζ + ∂/∂ζ(np

(1) up
(2) )+ ∂/∂ζ(np

(2) up
(1) ) + νψ/τ= 0,   

              (62) 

∂nn
(1)/∂τ −Vp ∂nn

(3)/∂ζ + ∂un
(3)/∂ζ + ∂/∂ζ(nn

(1) un
(2))+∂/∂ζ(nn

(2) un
(1) ) + νψ/τ= 0, 

               (63) 

∂up
(1)/∂τ −Vp∂up

(3)/∂ζ −Vpnp
(1) ∂up

(2)/∂ζ −Vpnp
(2)∂up

(1)/∂ζ + ∂/∂ζ(up
(1) up

(2) )+ np
(1) up

(1) 
∂up

(1)/∂ζ+ np
(1) ∂ψ(2)/∂ζ + np

(2) ∂Ψ/∂ζ + ∂ϕ(3)/∂ζ + ∂np
(3)/∂ζ = 0,   

              (64) 

∂un
(1)/∂τ −Vp∂un

(3)/∂ζ −Vpnn
(1) ∂un

(2)/∂ζ −Vpnn
(2) ∂un

(1)/∂ζ + σ/µ ∂nn
(3)/∂ζ – β/µ ∂ϕ(3)/∂ζ + 

∂/∂ζ(un
(1)un

(2) )+ nn
(1) un

(1) ∂un
(1)/∂ζ − nn

(1) (β/µ) ∂ψ(2)/∂ζ − nn
(2) (β/µ) ∂Ψ/∂ζ = 0,   

              (65) 

∂2ψ/∂ζ2+ np
(3) −(1−lα)nn

(3) + ( s/2 ) Ψ2 = 0.           (66) 

Now, combining (62)-(66), we obtain an equation of the form: 

∂Ψ/∂τ + (ν/2τ)ψ + sbΨ ∂Ψ/∂ζ + abΨ2 ∂Ψ/∂ζ + b ∂3Ψ/∂ζ3 = 0,    
              (67) 

where 

a = ( 1/2w5) (A(1)15Vp4 −A(2)4Vp
2 + A(3)),           (68) 

b = [w2/{2Vp(1 + cµ)}] (1−µ) −3/2.           (69) 

with 

A(1)= 1− (β2µ2/C),             (70) 

A(2)= 1− (β2µσ/C),             (71) 

A(3) = 1−( β2σ2/C),             (72) 

Equation (67) is the modified Gardner (mG) equation. The term ‘modified’ has been used 
because of the extra term (ν/2τ)ψ, which arises as a result of the effects of the nonplanar 
geometry. ν = 1(2), corresponds to a cylindrical (spherical) geometry, while ν = 0 
corresponds to a 1D as well as planar geometry. As Eq. (67) contains both ψ2 and ψ3 term, it 
must support both SW and DL solutions. An exact analytic solution of (67) is not possible. 

Therefore, we have numerically solved (67), and have studied the effects of cylindrical and 
spherical geometries on time-dependent DIA-GSs. The initial condition that we have used 
in our numerical analysis, is in the form of the SWs solution of (67) without the term (ν/2τ) 
ϕ. 
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FIG. 22: The effects of the cylindrical geometry on the compressive 
DIA-GSs for α = 0.5, β = 1, σ = 10, µ = 1, and U0 = 0.1, when the system contains negative 
dust. 

 

FIG. 23: The effects of the spherical geometry on the compressive DIA-
GSs for α = 0.5, β = 1, σ = 10, µ = 1, and U0 = 0.1, when the system contains negative dust. 

FIG. 24: The effects of the cylindrical geometry on the negative DIA-
GSs for α = 0.5, β = 1, σ = 10, µ = 1, and U0 = 0.1, when the system contains negative dust. 

FIG. 25: The effects of the spherical geometry on the negative DIA-GSs 
for α = 0.5, β = 1, σ = 10, µ = 1, and U0 = 0.1, when the system contains negative dust. 

FIG. 26: The effects of the cylindrical geometry on the compressive 
DIA-GSs for α = 0.5, β = 1, σ = 1, µ = 100, and U0 = 0.1, when the system contains positive 
dust. 
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FIG. 27: The effects of the spherical geometry on the compressive DIA-
GSs α = 0.5, α = 0.5, β = 1, σ = 1, µ = 100, and U0 = 0.1, when the system contains positive 
dust. 

FIG. 28: The effects of the cylindrical geometry on the negative DIA-
GSs for α = 0.5, α = 0.5, β = 1, σ = 1, µ = 100, and U0 = 0.1, when the system contains positive 
dust. 

FIG. 29: The effects of the spherical geometry on the negative DIA-GSs 
for α = 0.5, α = 0.5, β = 1, σ = 1, µ = 100, and U0 = 0.1, when the system contains positive dust. 

Figures 22 and 24 show how the effects of the cylindrical geometry, when the system 
contains negative dust, modify the DIA-GSs, while figure 25 shows how the effects of the 
spherical geometry modify the DIA-GSs, when the system contains negative dust.  

Figures 28 -29 show how the effects of the cylindrical and spherical geometry on the negative 
DIA-GSs respectively, for positive dust. 

Again, figures 26 -27 show how the effects of the cylindrical and spherical geometry on the 
compressive DIA-GSs respectively, when the system contains positive dust. 

The numerical solutions of (67) reveal that for a large value of τ (e.g. τ = −40), the spherical 
and cylindrical solitary waves are similar to 1D planar structures. This is because for a large 
value of τ the term (ν/2τ) ψ, which is due to the effects of the cylindrical or spherical 
geometry, is no longer dominant. However, as the value of τ decreases, the term (ν/2τ) ψ 
becomes dominant, and the spherical and cylindrical DIA-GSs differ from the 1D planar 
ones. It is found that as the value of τ decreases, the amplitude of these localized pulses 
increases. It is also found that the amplitude of the cylindrical DIA-GSs is larger than those 
of 1D planar ones, but smaller than that of the spherical ones. 

ANALYSIS AND DISCUSSION 

In this section, an in-depth investigation has been made on several types of DIA solitons (K-
dV, mK-dV, and Gardner) and corresponding nonplanar SWs in a multi-ion dusty plasma 
system (consisting of positive and negative ions, and arbitrary charged stationary dust). A 
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comparative discussion among these three types of solutions has been also presented. It has 
been found that, the K-dV solitons and mK-dV solitons are not valid for µ = µc, which 
vanishes the nonlinear coefficients of the K-dV equation. The observations, which have been 
obtained from this investigation can be summarized as follows: 

1. The multi-ion dusty plasma system under consideration supports finite amplitude GSs 
(Gardner Solitons), whose basic features (polarity, amplitude, width, etc.) depend on the ion 
and dust number densities, temperature, masses, and charges of ions. 

2. The K-dV solitons, which is governed by the K-dV equation, do not exists around µ = µc. 
The amplitude of positive (negative) K-dV solitons increases (decreases) with the increase 
of concentration of negative dust. 

3. The existence of only positive mK-dV solitons have been observed. Unlike positive K-dV 
solitons, its amplitude also increases with the increase of concentration of negative dust. 

4. If the polarity of dust particles has been altered, above properties of K-dV and mk-dV 
solitons will also alter. 

5. With the increase of the temperature of negative ion, the amplitudes of both K-dV and 
mK-dV soli tons increase. But the amplitudes of both K-dV and mK-dV solitons first 
decreases with the increase of the charge of negative ion, but after a certain point it begins 
to increase. 

6. GSs which are governed by Gardner equation, are found to exist around µ = µc, and are 
shown be different from K-dV and mK-dV solitons. 

7. At µ < µc, positive GSs exist, whereas at µ > µc, negative GSs exist. 

8. The magnitude of the amplitudes of positive and negative GSs increase with both α and 
β, when the system contains negative dust, but decreases when the system contains positive 
dust. 

9. No GSs can exists at µ ≤ σ. 

10. The properties of the nonplanar (cylindrical and spherical) DIA-GSs are significantly 
different from those of the 1D planar ones. 

11. The amplitude of the cylindrical DIA-GSs is larger than those of planar ones, but smaller 
than that of the spherical ones. 12. For a large value of τ (e.g. τ = −40), the spherical and 
cylindrical solitary waves are similar to 1D planar structures. 

CONCLUSION 

We finally propose to carry out a laboratory experiment that may be able to test the theory that 

we presented in our present work. 
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