
Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 63

Android Anti-Virus System for Malware

Mutation in Networking

Chimeleze Collins Uchenna, Mardeni Bin Roslee*, Prince Ugochukwu Nmenme

Centre for Wireless Technology, Faculty of Engineering, Multimedia University, MALAYSIA

*Corresponding Contact:

Email: mardeni.roslee@mmu.edu.my

ABSTRACT

Nowadays, the rapid evolution in the mobile phone industry has attracted lots
of consumers around the world while smartphones being the trend of the phone
with the highest demand by a large margin. Recent research has shown that
Android Operating System has accounted for 88% of the mobile phone market
which has led to the production of different varieties malware targeted mostly
on Android Phones. Furthermore, recent research has also revealed that there is
high negligence to this great threat where by Android Antimalware software
only counter trivial attacks posed by malware or viruses. This paper supports
most of the theories and in fact, focuses on one of the most typical vulnerabilities
of Android Antimalware which is the mutation attacks. In this paper, the best
in class mobile antimalware for Android were assessed and tested how safe they
are against different normal obfuscation strategies even with known malware
and the results were not up to a satisfactory level. Furthermore, the scope of this
research also spans to the implementation of a proposed antimalware which
detects and counters mutation attacks using static detection of Android
malware using Integrity Check Technique. The feedbacks were analyzed using
SPSS 2.0. Analysis of respondents’ feedbacks shows that there is even little or
no knowledge of malware threats or proper antimalware by mobile phone
users. This brings great concerns and this work shows why assessment of this
subject matter is and essential considering the rapid growth of smartphone
usage. This paper is to evaluate the efficacy of Anti Malware tools on Android
in the face of various evasion techniques while developing a system that
counters this evasion technique.

Key words:
Android anti-virus, Malware, CRC3 Algorithm

INTRODUCTION

Mobile devices such as smartphones, iPod, and tablets is gradually becoming famous. Sadly,
this draws the attention of malicious developers too. Currently, malware have become a

12/27/2018 Source of Support: None, NoConflict of Interest: Declared

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially,

and although the new works must also acknowledge & be non-commercial.

http://creativecommons.org/licenses/by-nc/4.0/

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 64 Engineering International, Volume 6, No. 2 (2018)

matter of interest in the world of mobile computing today. Mostly, it has been stated in the
android OS, which is one of the famous mobile OS, malicious software’s has been rapidly
growing, and android is the obvious target of today for malware authors (Labs, 2014). At
the rate which android malware are growing, the platform has also evolved in the
production of antimalware tools for the OS, offered to all Android with a scope of free and
paid categories, available at the android app Google Play store.

In this paper, we assess the adequacy of anti-malware apparatuses on Android OS even
with different avoidance methods. For instance, polymorphism is a typical confusion
strategy that has been broadly utilized by a malware to sidestep recognition software by
changing a malware in various structures ("transforms") yet with a similar code structure.
Moreover, the expression "change" comprehensively is utilized, to allude to different
polymorphic or transformative changes.

OVERVIEW OF WORK

In this work, an AV-Test.org, an antivirus assessment lab has been reviewed which
appraised antiviruses for Android for the culmination of their recognition. This research is
impertinent to their studies or research in that antivirus’s execution in identifying
polymorphic variations of known virus are assessed. The greater part of the apparatuses
(9/10) examined is in this paper are appraised as "excellent" by them. This Provides
motivations to trust that the apparatuses were not examined won't have any better
protection from polymorphism likewise considered the vigorousness of antiviruses against
Android viruses as of late (Zheng et al., 2012). They execute a subset of the mutations, utilize
them to create a few virus variations, and test these on VirusTotal, a web service that
checkmates submitted tests against more than forty antiviruses. Their outcomes however
just demonstrate the adjustment in general detections rates as the mutations are connected.
The consequences of this exploration are exceptionally strong demonstrates that all hostile
to malware instruments really surrender for all malware tests tried. Also, the shortcomings
and qualities of a portion of the items were additionally found. VirusTotal filter was not
utilized because detection rates for some antivirus to virus, (for example Dr. Web and AVG)
are boundlessly unique for the portable adaptation and the VirusTotal (maybe desktop-
based) rendition. Christodorescu and Jha in 2004 directed a research like this research on
desktop antivirus to malware applications eight years back (Fredrikson et al., 2010). They
likewise landed at the conclusion that these applications have low strength against virus
jumbling. This research investigation depends on Android antivirus, and there was
incorporation a few perspectives in this research study that are extraordinary to Android.
Moreover, this research dates after many research works (see beneath) on mutating strong
detection, and it is normal that the proposed procedures to be promptly coordinated into
new plug items. At long last, there are many works in the business about the assessment of
desktop antivirus instruments on measurements, for example, signature fulfilment, ease of
use et cetera (Rubenking, 2012). The other paper focuses on the investigation and
implementation of a neural network binary malware classifier that can classify an unseen
file as malicious or benign. The scope has been narrowed down to classify Windows
Portable Executable (PE) files based on their imported library function calls (Rad et al., 2018).
Last but not least, the other work focuses on analyzing the malware in a restricted
environment and how information can be preserved. So, in other to address the negative
effects of malicious software, the author discussed some of the malware analysis methods
which was used to analyze the software in an effective manner and helped to control them
(Eze and Chukwunonso E., 2018).

Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 65

THE SURVEY

In the quest of investigating the testing of android anti-virus response to malware mutation,
a survey was conducted. The objectives of the survey are under listed:

 To evaluate and test all the best anti malware and access their weakness and strength

 To develop and system that effectively counters virus mutation attacks which is a major
problem for existing Android Anti Malware.

 To Safeguard the Android devices from newest forms of malware attacks

 To develop a system that counters transformation attacks

Survey Design

The questionnaire was designed with both closed ended and open ended questions so as to
provide a more convenient way for the respondents to provide feedback. The questionnaire
contained 5-point Likert explanations, requiring no classified subtle elements of
respondents in this way making it simple for the respondents to take part in the survey. The
Scope of questionnaire involves statistic questions correlated to the research.

SURVEY ADMINISTRATION

The questionnaire was distributed amongst both the staff members and students of FTMS
College, Cyberjaya Campus, Malaysia. The staff and students who participated were
allowed to take the questionnaires home in other to enable them research further on the
topic.

Findings of the Survey

There was a sum total of 150 questionnaires distributed in this research. From the data
collected, only 102 responses were received. From this respondents, 83% own android
mobile devices and 17% do not own android devices. 67% of respondents use an anti-virus
on their android mobile devices, while 33% of users do not make use of an antivirus. A total
number of 60 persons (69%) of the respondents makes use of the AVG, 21 persons (20%)
makes use of Norton anti-virus and 21 persons made use of the ESET anti-virus.
Respondents who positively rated the effectiveness of their current anti-virus were 51 (50%)
and those who negatively rated theirs were also 51 (50%). Also, 50% of the users believed
that their current anti-virus provided complete solution and detection against mutual
attack, the other 50% did went contrary with their choice. 67% feel more secured with an
anti-virus on their android devices, while 33% did not feel secured having an anti-virus
software. 83.3% of respondents were satisfied with the level of protection that was being
offered by their android anti-viruses and 16.7% of them were not satisfied. 16.7% of the
respondent do not find the application easy to use. 50% could not really decide if it’s easy
to use nor difficult to use, while 33.3% found the application easy to use. 16.7% disagree to
the statement that android anti-virus tends to slow down phone’s performance by
exhausting the RAM space, 33.3% were not able to ascertain if the statements is true. While
33.3% agreed to it, and the remaining 16.7% strongly agreed to the question. 16.7% do not
agree that their current anti-viruses require certain updates. 16.7% of the respondents also
were not able to decide. While 33.3% agreed that updates to their android anti-virus is quite
paramount. 66.7% of the participants strongly agree to the owners of the application to be
able to access/ for the Android Anti viruses to showcase the level of privacy that is being
accessed by applications on their devices.

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 66 Engineering International, Volume 6, No. 2 (2018)

Figure 1: Anti-virus currently used by respondents

THE EXISTING AND PROPOSED SYSTEM

The method of virus detection method used in proposed system is called the Integrity Check
Technique. Integrity checking is on the most popular method of detecting viruses. This
method identifies the existence of malwares by matching the hash values of a file with the
hash value of its uninfected version. A file is deemed to be uninfected If no difference is
found between the two hash values (Thengade et al., 2014). Therefore, integrity check
technique does not scan for existence of malicious code. It however, checks whether the code
is uninfected as compared to its initial state.

At first, a framework is thought to be uninfected. At this phase the unique characteristics
(fingerprint) of each file on the system is figured and put away in a safe area in the storage.
The unique characteristics can be computed utilizing a few distinct calculations, for
example, an MD4, MD5, or even a simple CRC32 (Thengade et al., 2014). The proposed
system was conditioned to similar algorithmic pattern to Integrity Check Virus Detection
Technique whilst imploring Cyclic Redundancy Check calculation during file integrity
check process. This method is quite old and widely used in most antivirus software, because
it is still very reliable (Kane, 2014). This calculation makes unique tables for storing records
in the CRC sum. Simultaneously it drives through a folders tree and special tables, on the
off chance that it finds new unregistered file then antivirus computes its CRC aggregate and
spares it in these tables, if record is now enrolled in the tables. At that point antivirus
contrasts its CRC values and their previous value (Koopman et al., 2015).

Using this above stated strategy the proposed system was designed using same structure
whereby the antivirus scans new files, checks if its unregistered file using the AppData class,
calculates its integrity and carries out file permissions checks and its activities before
declaring such file as safe or dangerous to the device.

The following flowchart is a representation of the Data Integrity Check Process. This process
comprises of an Integrity Check with a Yes or No condition. If the integrity check is fulfilled
(Yes), it then reads the Program’s executable code store from the host memory before then
computing the ICV to known good ICV. A Match condition block comes after the Compare
Computed ICV to Known Good ICV and if it does not match (YES), image remains
unmodified and is taken back to the Integrity Check condition to repeat the process.
Whereas, if it matches (NO), the image is modified and remedy action is being taken.

Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 67

Figure 2: Data integrity check process

Table 1: Data Integrity Checking Technique

Vendor Product Package name version

AVG Antivirus Free com.antivirus 3.1

Dr. Web Dr. Web anti-virus Light com.drweb 7.00.3

Lookout Lookout Mobile Security com.lookout 8.7.1

ESET ESET Mobile Security com.eset.ems 1.1.995

Dr. Web Dr. Web anti-virus Light com.drweb 7.00.3

Kaspersky Kaspersky Mobile Security com.kms 9.36.28

Trend micro Mobile Security Personal Ed. com.trendmicro.tmmspersonal 2.6.2

ESTSoft ALYac Android com.estsoft.alyac 1.3.5.2

Zoner Zoner Antivirus Free com.zoner.android.antivirus 1.7.2

Webroot Webroot Security & Antivirus com.webroot.security 3.1.0

Currently, most anti-virus products are embodied with integrity checking techniques in such a
comprehensive way. There are a lot of things that are still not being checked. Older integrity
checkers are seen as simply too slow or hard to use to be that effective (Computer Know, 2017).

Data integrity is defined as a fundamental attribute of information security. It is the accuracy
and consistency of data which is stored in a data mart, data warehouse, database or any
other construct (Veracode, 2017).

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 68 Engineering International, Volume 6, No. 2 (2018)

Prior to choosing an integrity checker, the following features must be contained:

 Ease of use with a clear and concise report and built-in help.

 An integrity checker has to be fast.

 The integrity check computation must be more sophisticated than a mere checksum.

 It should be able to check and restore the boot and partition sectors.

 It should possess some built-in safety features for protection. Such as: the ability to
define the signature information file name and save it on an external media file.

Table 2: Dataset

Famliy Package name SHA-1 code Date Found Remarks

DroidDream com.droiddream. bowlingtime 72adcf43e5f945ca9f72
064b81dc0062007f0fbf

03/2011 Root exploit

Fakeplayer org.me.androidapplication1 1e993b0632d5bc6f0741
0ee31e41dd316435d997

08/2010 SMS trojan

This area portrays the antivirus items and the virus tests which were utilized for this
research. Ten antivirus products were assessed, which are recorded in Table 1. There are
many free and paid against malware. The most mainstream antivirus; Kaspersky and Trend
Micro, which were then not exceptionally prominent but rather are settled merchants in the
security business were incorporated.

The malware set utilized as a part of this examination traverses more than two distinctive
virus types. Droid-Dream is a malware with root exploit characteristics. DroidDream tries
to get root benefits utilizing two diverse root abuses, seethe against the enclosure, and
exploid misuse. Fakeplayer the principal known malware on Android, sends SMS messages
to premium numbers, in this way costing cash to the client.

Table 3: Malware samples used for testing anti-malware tools

Code Technique

P
A
RP
EE
RI
RF
ED
CR
CI
JN

Repack
Disassemble and assemble
Rename package
Encrypt native exploit or payload
Rename identifiers
Rename files
Encrypt strings and array data
Reorder code
Call indirection
Insert junk code

All transformations contain P

All transformations except P contain A

RESULT AND ANALYSIS

As has already been discussed, malware samples using various techniques discussed in
earlier sections were transformed and passed through anti-malware tools for evaluation. 4
and 5, depicts the series of transformations applied to DroidDream and Fakeplayer samples
and the detection results on various anti-malware tools.

Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 69

The blank cells in the tables represent positive detentions which were positive while cells
with 'X' show that the antivirus failed to identify the virus test after the given mutations
were implemented to virus sample. The tables mirrors a universal approach for this
research. Furthermore testing with insignificant mutations were completed and after that
continue with mutations that are more unpredictable. Every mutation is implemented into
a virus sample and the mutated sample is tested on an antivirus. On the off chance that
detection breaks with minor mutations, the process is then brought to a halt. Next, the
utilization of all the DSA mutations. On the off chance that detection still does not break
mutation, blends of DSA mutation is also applied

Generally there is no characterized arrangement in which mutations ought to be connected
(now and again a heuristic works; for instance, viruses that incorporate native exploitation
are probably going to be detected in view of those endeavors). However, in this paper, there
was no use of more than two mutations to break identification. Results with all the virus
tests are outlined in Table 6. This table gives the insignificant mutations relevant to avoid
detection for malware sets. For instance, DroidDream requires both endeavor encryption
and call indirection to sidestep Dr. Web's discovery. These negligible mutations additionally
give knowledge into what sort of detection marks are being utilized. See Table 4 and Table
5 for key.

Table 4: DroidDream mutation against antiviruses. (‘X’ indicates failure in detection)

Table 5: Fakeplayer mutation against antiviruses. (‘x’ indicates failure in detection. EE
transformation does not apply for lack of native exploit or payload in Fakeplayer)

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 70 Engineering International, Volume 6, No. 2 (2018)

METHOD OF VIRUS DETECTION

The method of virus detection used in proposed system is called the Cyclic Redundancy
Check. This method is quite old and widely used in most antivirus software, because it is
still very reliable (Kane, 2014). A cyclic redundancy check (CRC) is commonly used in
storage devices and digital network as an error-detecting to detect accidental changes in raw
data (Wadhe et al., 2012). This algorithm creates special tables for storing files CRC sum. It
goes through a folders tree and special tables simultaneously, if it finds new unregistered
file then antivirus calculates its CRC sum and saves it in these tables, if file is already
registered in the tables. Then antivirus compares its CRC value with their previously
calculated value (Koopman et al., 2015). Using this above stated strategy the proposed
system was designed using same structure whereby the antivirus scans new files, checks if
its unregistered file using the AppData class, calculates its CRC and carries out file
permissions checks and its activities before declaring such file as safe or dangerous to the
device.

Algorithm (CRC32)

CRC32 is a checksum/hashing algorithm that is very commonly used in kernels, and for
Internet checksums. It is very similar to the MD5 checksum algorithm. Start with a 32bit
checksum with all bits set (0xffffffff). This helps to give an output value other than 0 for an
input string of "0" bytes. In a loop: Look up a "polynomial" (actually just a 32bit value) in a
table, based on the next piece of input data (usually a byte), and the low N bits of the
previous CRC value. (Where N is the size of the data you are operating on -- usually 8 bit
bytes.). Shift the previous 32bit CRC value down by N bits. Exclusive-OR the "polynomial"
together with the shifted CRC value to produce a new value. The proposed system
algorithm is seen below.

Unsigned int crc32 (unsigned char *message)

{

 int a,b;

 unsigned int byte, crc;

 a = 0;

 crc = 0xFFFFFFFF;

 while (message[a] != 0)

 {

 byte = message[a]; // for next byte.

 byte = reverse(byte); // reversal 32 -bit.

 for (b = 0; b<= 7; b++)

 { // eight times.

 if ((int)(crc ^ byte) < 0)

 crc = (crc << 1) ^ 0x04C11DB7;

 else crc = crc << 1;

 byte = byte << 1; // Ready for next msg bit.

 } a = a + 1;

 } return reverse(~crc);

}

Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 71

At the end of the loop, exclusive-OR the calculated CRC value with 0xffffffff again (this is
identical to doing a binary NOT on the CRC value). This is the final CRC32 result. See Table
6 for key.

Table 6: Evaluation summary (‘+’ indicates the composition of two transformations)

 DroidDream Fakeplayer

AVG RP RP + RI

Symantec RI RP + RI

Lookout P RP + RI

ESET RI + EE RI

Dr. Web EE + CI CI

Kaspersky EE + ED RI

Trend M. EE + RF A

ESTSoft RP RP

Zoner A A

Webroot RI RP

First Finding

All the antiviruses tested in this research are vulnerable against mutation attacks. Every one
of the mutations showing up in Table 6 are anything but difficult to create and apply,
reclassify just certain syntactic properties of the virus, and are basic approaches to mutate a
malware or virus. Mutations like identifier renaming and information encryption are
effortlessly accessible utilizing free and business apparatuses. Endeavor and payload
encryption is additionally simple to accomplish.

Second Finding

No less than 43% signatures are not founded on code level relics. That is, these depend on
file names, checksums (or paired successions) or data effortlessly acquired by the Package
Manager API. Likewise all AVG marks were observed to be gotten from the substance of
Android Manifest just (and subsequently that of the PackageManager API). If there should
be an occurrence of AVG, the marks depend on application part classes or bundle names or
both. Moreover, this data is gotten from Android Manifest as it were. This cases was
affirmed by putting a phony Android Manifest in malware bundles and amassing them
with whatever remains of the bundle kept as it seems to be. This Android Manifest did not
have any of the segments or bundle names declared by the virus. The outcomes were that
identification was negative for all the antivirus tests.

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 72 Engineering International, Volume 6, No. 2 (2018)

RESULT AND OUTPUT

The proposed system, Norton, and AVG Antivirus were tested and result were stated below.

Table 7: Test Scenario 1

S/N Expectation Result

1. The proposed system is expected to do a background
scan on the device upon which it is installed. If the
device has not been scanned by the. Then the user
upon first usage of the system will be asked to accept
the terms and conditions of the before making use of
the antivirus.

Result:
This worked perfectly fine as the proposed system
treated the device as an unfamiliar device hence the
behaviour of the system as portrayed by the image
on the right.

2. Further verification to ascertain if the proposed
system is able to identify familiar devices. The
antivirus is designed to show if the device has been
scanned before and show date or history of last
scan if the device was scanned before.

Result:

The image on the right shows that device is able to
display expected result upon first installation

3. The image on the right side of this table section
further proves that the proposed system is able to
recognize and device to which it is stored and also
able to keep history of scans carried out on the device

Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 73

Table 8: Test Scenario 2

S/N Action Verify if

1. As displayed on the image in this sections, it is was
verified that the proposed system was able to scan
the device memory fragments created by junk file
in the device and help resolve such issue

2. This was the most important and critical aspect the
proposed system. It is regarded as the primary
functionality of the proposed system.
Based on the context and scope of this research the
device used to carry out tests for this research was
infected with a virus application which was
mutated to avoid detection.

Result:
The proposed system (antivirus) was able to
discover vulnerabilities in the device and
furthermore detect the mutated virus installed in
the device

3RD Scenario involves the testing of the Norton Antivirus as against mutated droidreams
virus (Fake Facebook), and its results are shown below.

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 74 Engineering International, Volume 6, No. 2 (2018)

Table 9: 3RD Scenario

S/N Expectation

1. The existing system (Norton Antivirus) is expected to do a background scan on the
device upon which it is installed. The user will be ask to choose the options, scan

Result:

The Norton will scanning the whole ,and which is quite slow, and less effective at the end

2. Result:

Further verification to ascertain if the
Norton system is not able to identify
malware device (Mutated Fake
Facebook). It could not detect the Fake
Facebook(Mutated Droidreams
Malware ,which shows “No Malware
Detected” after effective scanning

Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 75

Table 10: 4th Test Scenario

AVG is testing against mutated Droidreams malware (Fake Facebook), observations and
results were shown below

S/N Expectation Result

1. The existing system (AVG Antivirus) is
expected to do a background scan on the
device upon which it is installed. The user
will be ask to choose the options, scan

Result:

The Norton will scanning the whole ,and
which is quite fast when compare to the
Norton Antivirus, and less effective at the
end

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 76 Engineering International, Volume 6, No. 2 (2018)

2. Result:
Further verification to ascertain if the
AVG system is not able to identify
malware (Mutated Fake Facebook). It
could not detect the Fake
Facebook(Mutated Droidreams Malware
,but found two non- significant risks

TRIVIAL TRANSFORMATIONS REPACKING

Those codes which do not require code level changes. The following transformation falls
into these categories.

Unzipping and Repacking

All the android packages are signed jar files. Using the zip utilities, we can unzip and then
it can be repacked using the android SDK. During this process, these applications are signed
with the different key. Detection signatures that matches the original developer key or the
checksum of entire package becomes in effective by this transformation (Kalaiarasi et al.,
2015) and (Sankareswari and Jothi, 2015).

Disassembling and Reassembling

In this, we disassemble the classes.dex of the application packages and then reassembled
again. Due to this the classes, methods, instruction order and strings in the dex file are
reassembles in more than one way and the compiled program will be represented in more
than one form so that the signature that matches the entire classes.dex file are evaded by
this transformation (Kalaiarasi et al., 2015) and (Sankareswari and Jothi, 2015).

Changing Package Name

In android, each application has a unique package name. In the given malicious application,
we change the package name so that we can evade the anti-malware products (Kalaiarasi et
al., 2015) and (Sankareswari and Jothi, 2015).

CONCLUSION

As a conclusion, due to the architecture of the proposed system which is created about the
limitations and scope of this research, it can be further advanced and be protracted with

Engineering International, Volume 6, No. 2 (2018) ISSN 2409-3629

Asian Business Consortium | EI Page 77

additional functionalities. Some of the features which would be included in the subsequent
version of the proposed system comprise of the reduction of false positive produced by the
antivirus during device scan, the use of cloud storage for the profiling of virus of signatures
which will include frequent fresh updates and the system would be deployed to Android
lower level API level 14 covering more android phones and also to iOS mobile operating
system. Finally, this paper is to evaluate the efficacy of Anti Malware tools on Android in
the face of various evasion techniques has been successfully achieved.

REFERENCES

Computer Know (2017), Integrity Checking. [Online] Available from:
<https://www.cknow.com/cms/vtutor/integrity-checking.html [Accessed on: 25th December,
2017].

Eze, A.O. and Chukwunonso E.C. (2018) Malware Analysis and Mitigation in Information
Preservation, IOSR Journal of Computer Engineering (IOSR-JCE) ISSN: 2278-0661, p-ISSN: 2278-
8727, Volume 20, Issue 4, Ver. I.

Fredrikson, M.; Jha, S.; Christodorescu, M.; Sailer, R. and Yan, X. (2010) “Synthesizing near-optimal
malware specifications from suspicious behaviors,” in Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, pp. 45–60.

Kalaiarasi, P. Rovina, F. Sowdeeswari, R. and Roshmi, A. (2015), EETA: Enhancing and estimating the
transformation of attacks in android application, 4(2).

Kane, J.P. (2014) System and method for reducing antivirus false positives. Ca, Inc., U.S. Patent 8,713,686.

Koopman, P., Driscoll, K. and Hall, B. (2015). Selection of Cyclic Redundancy Code and Checksum
Algorithms to Ensure Critical Data Integrity.

Labs, M. (2014). McAfee Labs. 5 November, pp. https://www.mcafee.com/hk/resources/reports/rp-
quarterly-threat-q3-2014.pdf.

Rad, B.B.; Nejad, M.K.H. and Shahpasand, M. (2018), Malware Classification and Detection Using
Artificial Neural Network, Journal of Engineering Science and Technology, pp.14 – 23.

Rubenking, N. J. (2012) “PCMag. The Best Antivirus for 2012,”
http://www.pcmag.com/article2/0,2817,2372364,00.asp.

Sankareswari, K. and Jothi, S.A. (2015), Hybrid Approach for Securing Biometric Templates Using
Visual Cryptography, 3 (9).

Thengade, A., Khaire, A., Mitra, D. and Goyal, A. (2014). Virus Detection Techniques and Their
Limitations. International Journal of Scientific & Engineering Research, 5(10).

Veracode (2017). https://www.veracode.com/state-software-security-2017

Wadhe, A., Suryawanshi, R. and Mahajan, N. (2012). Novel Approach for Worm Detection using
Modified Crc32 Algorithm.

Zheng, M.; Lee, P. and Lui, J. (2012) “Adam: An automatic and extensible platform to stress test android
anti-virus systems,” DIMVA.

--0--

Uchenna et al.: Android Anti-Virus System for Malware Mutation in Networking (63-78)

Page 78 Engineering International, Volume 6, No. 2 (2018)

ISSN: 2409-3629

Online Archive Link: https://abc.us.org/ojs/index.php/ei/issue/archive

https://abc.us.org/ojs/index.php/ei/issue/archive

