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ABSTRACT

In 2008, Lovejoy and Osburn defined the generating function for P n).In
2009, Byungchan Kim defined the generating function for P,(N).This
paper shows how to discuss the generat ng functions for P(n and (n)
Byungchan Kim also defined P, with increasing relation and
overpartition congruences mod 48 and 64. In 2006, Berndt found the
relation d1 A(n)— d3 .(N) has two values with certain restrictions and
various formulae by the common term &(N) .This paper shows how to
prove the four Theorems about overpartitions modulo 8. These Theorems
satisfy the arithmetic properties of the overpartition function modulo 8.
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INTRODUCTION

In this paper we give some related definitions of overpartition, ®(A), P, (n), d(n),

d;,(n),o(n) and x(N).We discuss the generating functions for E(n) and P2 (n). We

Il
o

analyze various relations 5(n)= > 2K P (n), E (Bn + 2) =0 (mod 4), E (4n + 3)
k

(mod 8),

P (8n+7) =0 (mod 64),

d,,(n)—d; ,(n) =[(1; +1)....(1, +1).if §,'s are even integers,
0. otherwise,

f’ (n) =2d,,(n) - 2d; ,(n) - 2y(n) - 26(n) + 4d(n) (mod 8),

o(n) = (2*" 1)1‘[ (% ] (Z qJ) and o-(n)z{ (r,+1)...(r, +1)(mod 4 )ifa = o

3(}‘1 +1) ..... ( T +1) (mod 4). otherwise,
respectively. We prove the four Theorems about overpartitions modulo 8 with certain
conditions of n.
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SOME RELATED DEFINITIONS

Overpartition: An overpartition of n is a partition of n in which the first occurrence of a

part may be overlined. Let P(n) denote the number of overpartitions of an integer n. For

convenience, define

P (0)=1. For example

n 1_3(”)
15 a1 2
2 2%, FELAH 4
3: 3.3, 241, 241, 2+1, 241, 14141, 1+1+1 8
4: 4.4, 3+, 341, 3+1, 3+1,242, 242, 24141,
24141, 2+1+1, 2+1+1, 1414141, 1+1+1+1 14

Similarly we get;

P (5)=24, P (6)=40, P (7)= 64,...
®(A) : An ordinary partition A, there are 2°™ distinct overpartitions, where ®(A) is the

number of distinct parts inA. For example if A = 2+1+1; ®(A) =2, there are four

overpartitions [2+1+1, 2+1+1,2+1+1, 2 +1+1] then. 200 =22 4.
P (M Byungchan Kim(2009)] : The number of partitions of n such that the number of

distinct parts is exactly k. For example P2 (6)= 6 since there are six partitions like 5+1,
4+2, 4+1+1, 3+1+1+1, 2+2+1+1, 2+1+1+1+1.
d(n) : The number of the divisors of n.
d; ,(n) [Alladi (1997)] :The number of the divisors of n which are congruent to i modulo
4.
o(n) :The sum of the divisors of n.
x(N)  :The term is defined by %(N) =, where n is a square of an integer,
{ o, otherwise.

For example, %(6) =0,%(9) =1,......
THE GENERATING FUNCTION

The generating function [Byungchan Kim(2009)] for E (n) is given by
i @+x") @+ X)L+ X)L+ X)....
it (L=x")  (A=x)1-x*)1-x%)....
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= @+ X+X2+2x3+2x* +3x° +.) (L X+ XT3 +5xt 4.
= 142X +3x% +8x° +14x* + 24x° + 40x° + 64x" +.....

= P(0) + P(D)X + P(2)x? + P(3)x® + P(4)X* +.........
= i I5(n)xn .

The generating function [Byungchan Kim(2009)] for P, (n) is given by

K ) K Y
bR

i (ﬁn_x;+....j2{(1_xxj2*(1—X2xj+”']

2

3 4

X X X X X X
: >+ 2. : s+ 2. : T+
1-x 1-x 1-x 1-x 1-x 1-x
= A+ X+ X2 +.)A+x2+ ) + 22X A+ X+ ) (L4 X+ +
= 2x° +4x* +10x° +....
= 2P,(3)x* + 2P, (4)x* + 2P, (5)X° +...
= Z 2P, (n)x". For convenience P,(1) =0 and P,(2) =0.

n>1

VARIOUS RELATIONS ABOUT OVERPARTITIONS

A)  Ifn=6, E (6) = 40, P,(6) = 4 (like : 6, 343, 2+2+2, 1+1+1+1+1+1), P,(6) =6, and
P3 (6) =1
2P,(6) + 2% P,(6) +2° P,(6)
=24+46+81

=8+24+8=40= |5(6)

. P (6)= 2P,(6) + 2* P,(6)+2° P,(6).
So we can write E(n) = Z 2P, (n) [Andrews (1967)].
k

Reducing this modulo 8, we obtain E(I’]) = 2P1(n) +2° P, (n) (mod 8), it is seen that
P, (n) =d(n), when d(n) is the number of the divisors of n including 1 and 7.

B) We get;

PQ=4, PG =24 .. ic,P(Q

4 = 0 (mod 4), E(3+2)= 24 =0 (mod 4),...
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We can conclude that P (3n+2) = 0(mod 4).

@) We get;

5(3) =8, P (7) =64, ....ie. P (3)=8 =0 (mod 8), E(4+3) =64 =0 (mod 8).

We can conclude that P (4n+3) =0 (mod 8).

D) We get;

P (7) =64, P (15)=1408, .. ie. P (7)= 64= 0 (mod 64), P (8+7)=1408 =0 (mod 64), .
We can conclude that P (8n+7)) =0 (mod 64). [Lovejoy et al (2008)]

S|

E) Letn=2°pl.psar...qy,,

If di, 4 () is the number of the divisors which are congruent to i modulo 4 .

Now if =9 = 3% = 3" when S, = 2is the even integer

d,,(9)=2, d;,(9)=1, then d,,(9)—d,,(9)=2-1=1.
Againif n=6=23= 2%.3% whena=1and s, =1

d1,4(6) =1 d3,4(6) =1,
Then d, ,(6) — ds ,(6) =1-1=0,
We can conclude that if n has the prime factorization 2° p{l ...... prkk ii ....... Cﬁ' , where the
P;'S are primes congruent to 1 modulo4 and Q i 'S are primes congruent to 3 modulo 4, then
d,,(n)—d;,(n) =)(r, +1)...(r, +1),if S;'S are even integers

0, otherwise [Fortin et al (2005)].

F)  Weget; d;,(9) =2 (like, the divisors are 1 and 9)
d; ,(9) =1, (like, the divisor is 3)

Now we get; 2 d; ,(9) — 2d; ,(9) — 2%(9) — 25(9) + 4d(n)
=2X2 -2X1-2X1-2X13+4X3

= -14 =2 (mod 8), but E (9) =154 =2 (mod 8).

E ©9) =2d,,(9) - 2d,,(9) —2¢(9) — 25(9) + 4d(9) (mod 9).

We can conclude that, E (n) =2d,,(n) - 2d; ,(n)—2x(n)—20(n) +4d(n) (mod 8) .
[Byungchan Kim(2009)]

G) Ifn=10=25= 2°5" wherea =1and I, =1
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22 -1 5°-1
-1 5-1

-.o(10) = (2 =1)(5° +5") but 0(10)_

=3 (1+5) = %.

=18 =18
We can conclude that

U(n) =(2a+l )H (z p; JH { q;nj . [Andrews (1967)]

. m=

H) Weget N=9= 3% =2%.3" wherea=0and S, =2
2
c(9) = ?; 11_ 226 =13 =1 (mod 4) = (0+1)= (1, +1) (mod 4),
againif N =10=2.5=2%5" wherea =1 and n=1

2 2 _
2 1155 11_3274_18 2 (mod4) =6 (mod4) =32 =3(1+1)

o(10) =

=3(r, +1) (mod 4).
We can write that

o(n) {(r L+ 1) (rk +1) (mod4)ifa=0

I’ +1 ..... I’k +1) (mod 4), otherwise. [Fortin et al (2005)]

THEOREM

Let n be an integer, then

1) P(n) = 0 (mod 8), where n is not a square of an odd integer or an even integer
and is not a double of a square.

2) E(n) =2 (mod 8), if n is a square of an odd integer.
3) E(n) =4 (mod 8), if n is a double of a square

4) 5(n) =6 (mod 8), if n is a square of an integer.
Proof: From above we get;
x(n) ={l, when n is a square of an integer,

0, otherwise.

P(n) =2 (d,,(n) —d,,(n) —2x(n) — 25(n) + 4d (N) (mod 8), ... (1)
where, d; ,(Nn) is the number of the divisors which are congruent to i modulo 4.

Now we will consider the three cases according to the parity of I; and §;

Case 1: There is an §; that is odd and [; is any integer, then
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d,,(n)—d,,(n)=0 %(n)=0 and d(n) =0 (mod 8).

From (1), we get

P(n) =2 (dy 4(n) —dg 4 (M)~ 2(n) ~ 20(n) +4d (1) (mod's)

= 0-2x0-20(Nn) + 0 (mod 8)

or P(n) = 20(n) (mod8)....2)
[sinceif N =6=2.3=2%3" wherea=1and S, in an odd integer, then
dl,4 (6) - d3,4 (6) =0 and %(6) =0 where 6 is not a square,

andd (6) =d (2.3) = (1+1) (1+1) =4
4d(6)=44=16 = 0 (mod 8)].
From relation G) we get;

o(n) = (2a+1 _1)H (i p" ]H (Zj“ q;“j [Berndt(2006)]

5
[since S;'S are odd integers, so mZ::() q;“ =0 (mod 4).

o(n)=0 (mod 4)and 2 o(N) =0 (mod 8)].
From (2) we can conclude that E(n) =0 (mod 8) for such n.

Case 2: All S 'S are even and there is an [; that is odd.
Then, dL4(n) —d3’4(n) = (I’l—+—1)...(l’k +1),%x(n) =0 where n is not a square and 4
d(n)=0 (mod 8).

From (1) we get;

P(n) =2 (g +D...6 +) -2 0(n) mod$).....3)

[sinceif n=5.3 =45 d(45)=d(5.3°)=(1+1).(2+1)=2.3=6
4d45)=4.6=24=0 (mod 8)]
and o(n) = (I’l +1)...(rk +1) (mod 4), where S;'Sare even I 'S are odd and a =0.

From (3), we can conclude that

P(n) = 0 (mod 8) , where n is not a square of an odd integer or an even integer

and is not a double of a square. Hence the Theorem 1 .
[Numerical example 1: If n is not a square of an odd integer or an even integer and is not a

double of a square. We get; 5(3) =8, 5(5) =24, ..
. P(3)=8=0(mod8), P(5)=24=0(mod8),...
We can conclude that E(n) = 0 (mod 8),for such n.]

Case 3: All the I;'S and §;'S are even.

Suppose that a is 0. Then n is a square.
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By (1) we deduce that

P(n) =2 (1 +D...€ +1)220(n) +4 (mod §)....(4)

[since d1,4(n) —d3,4(n) = (r1+1)...(rk +1) where s;'s are even and (N) =1 where
n is a square of an integer, d(n) = 1 (mod 8) and also, o(n) = (r1 +1)...(rk +1) (mod 4)
where I;'S and ;'S are even and also a = 0]

From (4) we get; P(n) = 2 (1 +D)-. € +D +22 (1, +D)...¢, +1) (mods)

5(n) = 2 (mod 8), when n is a square of an odd integer. Hence the Theorem 2 .
[Numerical example 2: If n is not a square of an odd integer,

We get; P(1)=2, P(9)=154, ...
P(1)=2=2(mod8), P(9)=154 =2(mod 8),...
We can conclude that E(n) = 2 (mod 8),for such n.]

Suppose that a is odd. Then n is a double of square.
From (1) we get;

P(n) =2 (f, +D)...€ +1-20(n) (mod 8). [Bernd(2006)]
[since d1,4(n) - d314(n) = (rl +1). ..(rk +1) where I'S and S;'S are even integers.
%, (n) =o, where n is not a square of an integer.

If n=23°5"
d (m) = (1+1). (2+1). (2+1)=18
4_d (n) =4.18=72=0 (mod 8)]

P(n) =2 (1 D€ +D 23 (1 +1)...¢ +1) (mod s)
[since o(N) =3 (rl +1)... (rk +1) (mod 4), where a is not zero]
P(n) =-4 (1 +D-..€, +1) (mod8)
=4 (r1+1)...(rk +1) (mod 8)
= 4 (mod 8).
[since I;'S and S;'S are even integers so, (r1 +1)... (rk +1) =1 (mod 8)] [Fortin et al (2005]
P(n) = 4 (mod 8), when n is a double of a square. Hence the Theorem 3 .
[Numerical example 3: I r1is a double of a square. We get; P(2)=4, P(8)=100, ...
. P(2)=4=4(mod8) , P(2.4)=100 = 4(mod 8),...

We can conclude that E(n) = 4(ITDd 8),for such n.]
Suppose that a is even. Then n is a square of an even integer.

From (1) we get; E(n) =2 (rl +1). ..(I’k +1)-2-26(N) + 4 (mod 8)
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[since dl 4(n)—d31 4(n) :(r1+1)...(rk +1) where I'S and S;'Sare even integers,
¥ (n) =1, where nis a square of an integer and d(n) =1 (mod 8)].
oo P(n)=2 (r +D)...€ +D +223 (1 +D)...6 +1) (mod 8)
[since a(n) =3 (r1+1)...(rk +1) (mod 4), where a # 0]
oo P(n)=-14 (f +)...€ +D) +2 (mod §
=4 (r1+1)...(rk +1) +2 (mod 8)

=41 +2 (mod 8)
[since I,'S and S;'S are even integers so (I’1 +1)...(I’k +1) =1 (mod 8)].

P(n) = 6 (mod 8), when n is a square of an even integer. Hence the Theorem 4 .

[Numerical example 4: If 1 is a square of an even integer. We get; P(4) =14, ..
P(4)=14 =6(mod 8),...
We can conclude that E(n) = 6(mod 8) J[for such n.]

CONCLUSION

In this study we have analyzed various relations E(n)zz 2p,(n), P(3n+2) =0
k
(mod 4),

P (4n +3) =0 (mod 8), P (8n + 7) =0 (mod 64),
dy,(n)—d;,(n) =[(r, +1)...(r, +1),if s;'s are even integers,
0, otherwise :

E (n) =2d, ,(n) - 2d,,(n) — 2% (n) — 25(n) + 4d(n) (mod 8),

o(n) =(2“'1 —I)H (; p,."‘JH [»Fo q}”}, ando{n)=((r, +1)...(r, +1)(mod4)ifa = o

i J
3(}‘1 - l).....(}’:: - 1) (mod 4), otherwise,
respectively with the help of numerical examples. We have verified the four Theorems
about overpartitions modulo 8 with numerical examples.
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