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ABSTRACT 

In 2008, Lovejoy and Osburn defined the generating function for  nP .In 
2009, Byungchan Kim defined the generating function for  nP2 .This 
paper shows how to discuss the generating functions for  nP  and  nP2 . 
Byungchan Kim also defined  nPk  with increasing relation and 
overpartition congruences mod 4,8 and 64. In 2006, Berndt found the 
relation )()( 4,34,1 ndnd   has two values with certain restrictions and 
various formulae by the common term )n( .This paper shows how to 
prove  the four Theorems about overpartitions modulo 8.These Theorems 
satisfy the arithmetic properties of the overpartition function modulo 8. 
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INTRODUCTION 

In this paper we give some related definitions of overpartition, ),n(d),n(P),( k  

)n(),n(d 4,i   and ).n( We discuss the generating functions for  nP  and
2

P (n). We 

analyze various relations   nP = ),n(p2 k

k

k

  

P (3n + 2)  0 (mod 4),  


P (4n + 3)  0 

(mod 8), 

 

 
respectively. We prove the four Theorems about overpartitions  modulo 8 with certain 

conditions of n.     
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SOME RELATED DEFINITIONS 

Overpartition: An overpartition of n is a partition of n in which the first occurrence of a 

part may be overlined. Let  nP  denote the number of overpartitions of an integer n. For 

convenience, define  

 
Similarly we get; 


P (5)= 24, 


P (6)= 40, 


P (7)= 64,... 

)( : An ordinary partition , there are 
)(2 

distinct overpartitions, where )(  is the 

number of distinct parts in . For example if   = 2+1+1; 2)(  , there are four 

overpartitions [2+1+1,  112 


, 2+


1 +1, 


2 +


1 +1] then. 422 2)( 
. 

)(nPk [ Byungchan Kim(2009)] : The number of partitions of n such that the number of 

distinct parts is exactly k. For example 
2

P (6)= 6 since there are six partitions like  5+1, 

4+2, 4+1+1, 3+1+1+1, 2+2+1+1, 2+1+1+1+1. 

d(n) : The number of the divisors of n. 

)n(d 4,i [Alladi (1997)] :The number of the divisors of n which  are congruent to i modulo 

4. 

)n(   :The sum of the divisors of n. 

)n(  : The term is defined by  )n(     1, where n is a square of an integer,  

    o, otherwise. 

For example, 0)6(  , ,.......1)9( 
 

THE GENERATING FUNCTION 

The generating function [Byungchan Kim(2009)] for 

P (n) is given by 

 
)....x1)(x1)(x1(

)......x1)(x1)(x1(

)x1(

)x1(
32
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n

n

1n 
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 = ......)x3x2x2xx1( 5432   .....)x5x3xx1( 432   

 = .....x64x40x24x14x8x3x21 765432   

 = ..........x)4(Px)3(Px)2(Px)1(P)o(P 432 


 

 = 
n

n

xnP )(
0





 . 

The generating function [Byungchan Kim(2009)] for  nP2  is given by 
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 = ...)5(2)4(2)3(2 5
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2  xPxPxP  

 = .)(2 2

1

n

n

xnP


For convenience 0)1(P2   and 0)2(P2  . 

VARIOUS RELATIONS ABOUT OVERPARTITIONS 

A) If n = 6,  

P (6) = 40, 4)6(P1   (like : 6, 3+3, 2+2+2, 1+1+1+1+1+1), 6)6(P2  , and 

 1)6(P3   

  
2

1 2)6(P2   
3

2 2)6(P  )6(P3  

 = 2.4 + 4.6 + 8.1 

 = 8 + 24 + 8 = 40 = )6(P


 



P (6) = 

2

1 2)6(P2   
3

2 2)6(P  )6(P3 . 

So we can write  nP  = )(2 nPk

k

k

 [Andrews (1967)]. 

Reducing this modulo 8, we obtain  nP  
2

1 2)(2 nP )(2 nP (mod 8), it is seen that

),()(1 ndnP  when d(n) is the number of the divisors of n including 1 and n.   

 
B) We get; 

 

P (2)= 4, 


P (5) = 24, .....    i.e., 


P (2) = 4   0 (mod 4), 


P (3+2)= 24 0 (mod 4),... 
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 We can conclude that   

P (3n+2)   0(mod 4).  

 
C)  We get; 

 

P (3) = 8, 


P (7) = 64, ..... i.e. 


P (3) = 8 0 (mod 8), 


P (4+3) = 64 0  (mod 8). 

 We can conclude that 

P (4n+3) 0  (mod 8). 

  
D)  We get; 

 

P (7) = 64, 


P (15)=1408, ... i.e. 


P (7)= 64 0 (mod 64), 


P (8+7)=1408 0 (mod 64), ...  

 We can conclude that 

P (8n+7)) 0 (mod 64). [Lovejoy et al (2008)] 

 

E) Let n = ,q....qp...p2 l1k1 s

l

s

1

r

k

r

1

a
, 

 If )(4, ndi is the number of the divisors which are congruent to i modulo 4 . 

 Now if n = 9 = 1s2 33  when 2s1  is the even integer 

    ,2)9(d 4,1   ,1)9(d 4,3   then  )9(d 4,1 .112)9(d 4,3   

Again if n = 6 = 2.3 = 1sa 3.2  when a=1 and 1s1   

  ,1)6(d 4,1    1)6(d 4,3  , 

Then )6(d 4,1 .011)6(d 4,3   

We can conclude that if n has the prime factorization l1k1 s

l

s

1

r

k

r

1

a q.......qp......p2 , where the 

s'pi  are primes congruent to 1 modulo 4 and  s'q j  are primes congruent to 3 modulo 4, then 

 )()( 4,34,1 ndnd  ),1r)....(1r( k1  if s'si  are even integers  

           0, otherwise [Fortin et al (2005)].  

 

F) We get;  2)9(d 4,1  (like, the divisors are 1 and 9) 

 ,1)9(d 4,3  ( like, the divisor is 3) 

Now we get; 2 )9(d 4,1  2 )n(d4)9(2)9(2)9(d 4,3   

 = 22   -21 - 21 -213 + 43 

 = -14  2 (mod 8), but 

P (9) = 154  2  (mod 8). 

  

P (9)  2 )9(d 4,1  2 )9(d4)9(2)9(2)9(d 4,3   (mod 9). 

We can conclude that, 

P (n)  2 )n(d 4,1  2 )(4)(2)(2)(4,3 ndnnnd   (mod 8) . 

[Byungchan Kim(2009)] 
 

G) If n = 10 = 2.5 = 1ra52  where a  = 1 and 1r1   
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)55)(12()10( 102    but    
15

15
.
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)10(
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    = 3 (1+5)           = 
4

24
.

1

3
 

    = 18             = 18 
We can conclude that 
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1 12)(  . [Andrews (1967)]  

 

H) We get, 1sa2 3.239n   where a = 0 and 2s1   

 113
2

26

13

13
)9(

2





  (mod 4) = (0+1) )1r( 1  (mod 4), 

 again if 1ra 5.25.210n  where a =1 and 1r1   

 218
4

24
.3

15

15
.

12

12
)10(

22









  (mod 4)  6  (mod 4)  = 3.2  = 3(1+1) 

       )1r(3 1  (mod 4). 

We can write that 

     1....1)( 1  krrn    (mod 4) if a = 0 

               1r.....1r3 k1   (mod 4), otherwise. [Fortin et al (2005)] 

THEOREM 

Let n be an integer, then 

1)  nP     0 (mod 8), where n is not a square of an odd integer or an even integer 

and is not a double of a square.  

2)  nP   2 (mod 8), if n is a square of an odd integer. 

3)  nP   4 (mod 8), if n is a double of a square 

4)  nP   6 (mod 8), if n is a square of an integer. 

Proof: From above we get; 

  )n(    1, when n is a square of an integer, 

                          0, otherwise. 

  

 nP    2 )(4)(2)(2))()(( 4,34,1 ndnnndnd    (mod 8), …  (1) 

 where, )n(d 4,i is the number of the divisors which are congruent to i modulo 4. 

Now we will consider the three cases according to the parity of ir  and js  

 

Case 1: There is an js that is odd and ir  is any integer, then 
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 0)n(d)n(d 4,34,1   o)n(   and 0)n(d   (mod 8).  

 From (1), we get 

  nP    2 )(4)(2)(2))(
4,3

)(
4,1

( ndnnndnd    (mod 8), 

   0-20 -2 )n( + 0 (mod 8) 

 or  nP    -2 )n(   (mod 8) .....(2)  

   [since if 1sa 3.23.26n   where a = 1 and 1s  in an odd integer, then 

   0)6(
4,3

d)6(
4,1

d   and 0)6(   where 6 is not a square,  

   and d (6) = d (2.3) = (1+1) (1+1) = 4 
  4 d (6) = 4.4 = 16   0 (mod 8)]. 
From relation G) we get; 

  






















 



 m

j

s

mj

m

i

r

mi

a qpn
ji

00

1 12)(  [Berndt(2006)]  

         [since s's j  are odd integers, so 0q
m

j

s

0m

j




 (mod 4). 

          on )(  (mod 4) and 2 0)( n  (mod 8)]. 

 From (2) we can conclude that  nP   0 (mod 8) for such n. 

 

Case 2: All s's j are even and there is an ir  that is odd. 

Then, 0)n(),1
k

r)...(1
1
r()n(

4,3
d)n(

4,1
d   where n is not a square and 4 

0)n(d   (mod 8). 

 From (1) we get; 

  nP    2 2)1)...(1
1

( 
k

rr )n(  (mod 8) ..... (3) 

   [ since if n = 5. 4532    63.2)12).(11()3.5(d)45(d 2   

         4 d (45) = 4.6 = 24 0   (mod 8)] 

and )n(  )1
k

r)...(1
1
r(    (mod 4), where s's j are even s'ri  are odd and a =0. 

 From (3), we can conclude that 

  nP    0 (mod 8) , where n is not a square of an odd integer or an even integer 

and is not a double of a square. Hence the Theorem 1 . 
[Numerical example 1: If n is not a square of an odd integer or an even integer and is not a 

double of a square. We get;   ,83 P     ,245 P … 

        8mod083 P  ,     8mod0245 P ,…                                            

We can conclude that   nP    0 (mod 8),for such n.] 

 

Case 3: All the s'ri  and s's j  are even. 

 Suppose that a is o. Then n is a square. 
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 By (1) we deduce that 

  nP    2 )1
k

r)...(1
1
r(  -2-2 )n( +4   (mod 8) .....(4) 

[since )1
k

r)...(1
1
r()n(

4,3
d)n(

4,1
d   where s's j  are even and 1)n(   where 

n is a square of an integer, d(n)   1 (mod 8) and also,  )n( )1
k

r)...(1
1
r(   (mod 4) 

where s'ri  and s's j  are even and also a = 0] 

 From (4)  we get;  nP    2 )1
k

r)...(1
1
r(  +2-2 )1

k
r)...(1

1
r(    (mod 8).   

   nP    2 (mod 8), when n is a square of an odd integer. Hence the Theorem 2 . 

[Numerical example 2: If n is not a square of an odd integer, 

We get;   ,21 P     ,1549 P … 

         8mod221 P  ,     8mod21549 P ,…                                            

We can conclude that   nP    2 (mod 8),for such n.] 

Suppose that a is odd. Then n is a double of square.  
 From (1) we get; 

  nP    2 )1
k

r)...(1
1
r(  -2 )n(  (mod 8). [Berndt(2006)] 

[since )1
k

r)...(1
1
r()n(

4,3
d)n(

4,1
d   where s'ri  and s's j are even integers. 

  (n) =o, where n is not a square of an integer. 

 If 
22 5.3.2n   

  d (n) =  (1+1). (2+1). (2+1)=18 
  4d (n) = 4.18=72 0 (mod 8)] 

   nP    2 )1
k

r)...(1
1
r(  -2.3 )1

k
r)...(1

1
r(   (mod 8) 

[since  )n( 3 )1
k

r)...(1
1
r(   (mod 4), where a is not zero] 

   nP    - 4 )1
k

r)...(1
1
r(   (mod 8) 

             4 )1
k

r)...(1
1
r(   (mod 8) 

             4  (mod 8). 

[since s'ri  and s's j  are even integers so, )1
k

r)...(1
1
r(  1  (mod 8)] [Fortin et al (2005]   

   nP    4  (mod 8), when n is a double of a square. Hence the Theorem 3 .    

[Numerical example 3: If n is  a double of a square. We get;    ,42 P      ,1008 P … 

        8mod442 P  ,     8mod41004.2 P ,…                                            

We can conclude that     8mod4nP ,for such n.] 

Suppose that a is even. Then n is a square of an even integer. 

From (1) we get;   nP    2 )1
k

r)...(1
1
r(  -2-2 4)n(   (mod 8) 
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[since )1
k

r)...(1
1
r()n(

4,3
d)n(

4,1
d   where s'ri  and s's j are even integers,     

 (n) =1, where n is  a square of an integer and d(n) 1 (mod 8)]. 

or   nP    2 )1
k

r)...(1
1
r(  +2-2.3 )1

k
r)...(1

1
r(   (mod 8) 

[since 3)n(   )1
k

r)...(1
1
r(   (mod 4), where a  0] 

or  nP    - 4 )1
k

r)...(1
1
r(  +2 (mod 8) 

          4 )1
k

r)...(1
1
r(  +2 (mod 8) 

          4.1  +2 (mod 8) 

[since s'ri  and s's j are even integers so )1
k

r)...(1
1
r(   1 (mod 8)]. 

   nP    6 (mod 8), when n is a square of an even integer. Hence the Theorem 4 . 

[Numerical example 4: If n is a square of an even integer. We get;    ,144 P … 

          8mod6144 P ,…                                            

We can conclude that     8mod6nP  ,for such n.] 

CONCLUSION 

In this study we have analyzed various relations  nP = ),n(p2 k

k

k

  

P (3n + 2) 0 

(mod 4),   

P (4n + 3) 0 (mod 8), 


P (8n + 7) 0 (mod 64),    

 )()( 4,34,1 ndnd  ),1r)....(1r( k1  if s'si  are even integers,  

         0, otherwise                ,  


P (n)  2 )n(d 4,1  2 )n(d4)n(2)n(2)n(d 4,3  (mod 8),

 

 
respectively with the help of numerical examples. We have verified the four Theorems 
about overpartitions modulo 8 with numerical examples. 
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