Lovejoy and Osburn's Overpartitions

Sabuj Das

Senior Lecturer, Department of Mathematics, Raozan University College, BANGLADESH

Corresponding Contact: Email: sabujdas.ctg@gmail.com

ABSTRACT

In 2008, Lovejoy and Osburn defined the generating function for P(n).In 2009, Byungchan Kim defined the generating function for $P_2(n)$. This paper shows how to discuss the generating functions for P(n) and $P_2(n)$. Byungchan Kim also defined $P_k(n)$ with increasing relation and overpartition congruences mod 4,8 and 64. In 2006, Berndt found the relation $d_{14}(n) - d_{34}(n)$ has two values with certain restrictions and various formulae by the common term $\sigma(n)$. This paper shows how to prove the four Theorems about overpartitions modulo 8. These Theorems satisfy the arithmetic properties of the overpartition function modulo 8.

Keywords: Convenience, congruent, modulo 8, prime factorizations, parity

INTRODUCTION

In this paper we give some related definitions of overpartition, $\omega(\lambda)$, $P_k(n)$, d(n),

 $d_{i,4}(n), \sigma(n)$ and $\chi(n)$. We discuss the generating functions for $\overline{P}(n)$ and $P_2(n)$. We

analyze various relations $\overline{P}(n) = \sum_{k} 2^{k} p_{k}(n), \overline{P}(3n+2) \equiv 0 \pmod{4}, \overline{P}(4n+3) \equiv 0$ (mod 8),

 $P(8n+7) \equiv 0 \pmod{64}$ $d_{1,4}(n) - d_{3,4}(n) = \begin{cases} (r_1 + 1)....(r_k + 1), \text{if } s_i \text{'s are even integers,} \\ 0, \text{ otherwise,} \end{cases}$ $P(n) \equiv 2d_{14}(n) - 2d_{34}(n) - 2\chi(n) - 2\sigma(n) + 4d(n) \pmod{8},$ $\sigma(\mathbf{n}) = \left(2^{\mathbf{a}+1} - 1\right)\prod_{i} \left(\sum_{m=0}^{s_{i}} \mathbf{p}_{i}^{m}\right)\prod_{j} \left(\sum_{m=0}^{s_{j}} \mathbf{q}_{j}^{m}\right), \text{ and } \sigma(n) \equiv \left\{\begin{array}{c} (r_{1}+1)....(r_{k}+1)(\mathrm{mod}\,4)ifa = o\\ 3(r_{1}+1)....(r_{k}+1)(\mathrm{mod}\,4), \text{ otherwise,} \end{array}\right\}$

respectively. We prove the four Theorems about overpartitions modulo 8 with certain conditions of n.

P

Some Related Definitions

Overpartition: An overpartition of n is a partition of n in which the first occurrence of a part may be overlined. Let $\overline{P}(n)$ denote the number of overpartitions of an integer n. For convenience, define

(0)=1. For	example	
n		$\overline{P}(n)$
1:	1, 1	2
2:	$2_{*}, \bar{2}, 1+1, \bar{1}+1$	4
3:	3, 3, 2+1, 2+1, 2+1, 2+1, 1+1+1, 1+1+1	8
4 :	4, 3+1, 3+1, 3+1, 3+1, 3+1, 2+2, 2+2, 2+1+1,	
	2+1+1, 2+1+1, 2+1+1, 1+1+1+1, 1+1+1+1	14

Similarly we get;

P (5)= 24, P (6)= 40, P (7)= 64,...

 $\omega(\lambda)$: An ordinary partition λ , there are $2^{\omega(\lambda)}$ distinct overpartitions, where $\omega(\lambda)$ is the number of distinct parts in λ . For example if $\lambda = 2+1+1$; $\omega(\lambda) = 2$, there are four

overpartitions [2+1+1, 2+1+1, 2+1+1, 2+1+1] then. $2^{\omega(\lambda)} = 2^2 = 4$.

 $P_k(n)$ [Byungchan Kim(2009)] : The number of partitions of n such that the number of distinct parts is exactly k. For example P₂(6)= 6 since there are six partitions like 5+1, 4+2, 4+1+1, 3+1+1+1, 2+2+1+1, 2+1+1+1+1.

d(n) : The number of the divisors of n.

 $d_{i,4}(n)$ [Alladi (1997)] :The number of the divisors of n which are congruent to i modulo 4.

 $\sigma(n)$:The sum of the divisors of n.

 $\chi(n)$: The term is defined by $\chi(n) = \begin{cases} \text{, where n is a square of an integer,} \\ \text{o, otherwise.} \end{cases}$

For example, $\chi(6) = 0$, $\chi(9) = 1$,....

THE GENERATING FUNCTION

The generating function [Byungchan Kim(2009)] for P(n) is given by

 $\prod_{n=1}^{\infty} \frac{(1+x^{n})}{(1-x^{n})} = \frac{(1+x)(1+x^{2})(1+x^{3})....}{(1-x)(1-x^{2})(1-x^{3})...}$

$$= (1 + x + x^{2} + 2x^{3} + 2x^{4} + 3x^{5} +) \quad (1 + x + x^{2} + 3x^{3} + 5x^{4} +)$$

= 1 + 2x + 3x^{2} + 8x^{3} + 14x^{4} + 24x^{5} + 40x^{6} + 64x^{7} +
= $\bar{P}(o) + \bar{P}(1)x + \bar{P}(2)x^{2} + \bar{P}(3)x^{3} + \bar{P}(4)x^{4} +$
= $\sum_{n=0}^{\infty} \bar{P}(n)x^{n}$.

The generating function [Byungchan Kim(2009)] for $P_2(n)$ is given by

$$\begin{split} &\left(\sum_{k\geq 1} \frac{x^{k}}{1-x^{k}}\right)^{2} - \sum_{k\geq 1} \left(\frac{x^{k}}{1-x^{k}}\right)^{2} \\ &= \left(\frac{x}{1-x} + \frac{x^{2}}{1-x^{2}} + \dots\right)^{2} - \left[\left(\frac{x}{1-x}\right)^{2} + \left(\frac{x^{2}}{1-x^{2}}\right)^{2} + \dots\right] \\ &= 2\frac{x}{1-x} \cdot \frac{x^{2}}{1-x^{2}} + 2 \cdot \frac{x}{1-x} \cdot \frac{x^{3}}{1-x^{3}} + 2 \cdot \frac{x}{1-x} \cdot \frac{x^{4}}{1-x^{4}} + \dots \\ &= 2x^{3}(1+x+x^{2}+\dots)(1+x^{2}+\dots) + 2x^{4}(1+x+\dots)(1+x^{3}+\dots) + \dots \\ &= 2x^{3} + 4x^{4} + 10x^{5} + \dots \\ &= 2P_{2}(3)x^{3} + 2P_{2}(4)x^{4} + 2P_{2}(5)x^{5} + \dots \\ &= \sum_{n\geq 1} 2P_{2}(n)x^{n}. \text{ For convenience } P_{2}(1) = 0 \text{ and } P_{2}(2) = 0. \end{split}$$

VARIOUS RELATIONS ABOUT OVERPARTITIONS

A) If n = 6, $\overline{P}(6) = 40$, $P_1(6) = 4$ (like : 6, 3+3, 2+2+2, 1+1+1+1+1), $P_2(6) = 6$, and $P_3(6) = 1$

$$\therefore \quad 2P_1(6) + 2^2 P_2(6) + 2^3 P_3(6)$$

= 2.4 + 4.6 + 8.1
= 8 + 24 + 8 = 40 = $P(6)$

$$\vec{P}(6) = 2P_1(6) + 2^2 P_2(6) + 2^3 P_3(6).$$

So we can write $\overline{P}(n) = \sum_k 2^k P_k(n)$ [Andrews (1967)]

Reducing this modulo 8, we obtain $\overline{P}(n) \equiv 2P_1(n) + 2^2 P_2(n) \pmod{8}$, it is seen that $P_1(n) = d(n)$, when d(n) is the number of the divisors of n including 1 and *n*.

B) We get; P(2)=4, P(5)=24, i.e., $P(2)=4 \equiv 0 \pmod{4}$, $P(3+2)=24 \equiv 0 \pmod{4}$,... We can conclude that $P(3n+2) \equiv 0 \pmod{4}$.

C) We get;

$$P(3) = 8$$
, $P(7) = 64$, i.e. $P(3) = 8 \equiv 0 \pmod{8}$, $P(4+3) = 64 \equiv 0 \pmod{8}$.

We can conclude that $P(4n+3) \equiv 0 \pmod{8}$.

D) We get;

$$\vec{P}(7) = 64, \ \vec{P}(15) = 1408, \dots \text{ i.e. } \vec{P}(7) = 64 \equiv 0 \pmod{64}, \ \vec{P}(8+7) = 1408 \equiv 0 \pmod{64}, \dots$$

We can conclude that $\vec{P}(8n+7) \equiv 0 \pmod{64}$. [Lovejoy et al (2008)]

E) Let $n = 2^{a} p_{1}^{r_{1}} \dots p_{k}^{r_{k}} q_{1}^{s_{1}} \dots q_{1}^{s_{1}}$, If $d_{i,4}(n)$ is the number of the divisors which are congruent to i modulo 4. Now if $n = 9 = 3^{2} = 3^{s_{1}}$ when $s_{1} = 2$ is the even integer

$$\therefore$$
 $d_{1,4}(9) = 2$, $d_{3,4}(9) = 1$, then $d_{1,4}(9) - d_{3,4}(9) = 2 - 1 = 1$.

Again if $n = 6 = 2.3 = 2^{a} \cdot 3^{s_1}$ when a=1 and $s_1 = 1$

 \therefore $d_{1,4}(6) = 1$, $d_{3,4}(6) = 1$,

Then $d_{1,4}(6) - d_{3,4}(6) = 1 - 1 = 0$.

We can conclude that if n has the prime factorization $2^{a} p_{1}^{r_{1}} \dots p_{k}^{r_{k}} q_{1}^{s_{1}} \dots q_{1}^{s_{1}}$, where the p_{i} 's are primes congruent to 1 modulo 4 and q_{j} 's are primes congruent to 3 modulo 4, then $d_{1,4}(n) - d_{3,4}(n) = \int (r_{1} + 1) \dots (r_{k} + 1)$, if s_{i} 's are even integers 0, otherwise [Fortin et al (2005)].

- F) We get; $d_{1,4}(9) = 2$ (like, the divisors are 1 and 9) $d_{3,4}(9) = 1$, (like, the divisor is 3)
- Now we get; $2 d_{1,4}(9) 2 d_{3,4}(9) 2\chi(9) 2\sigma(9) + 4d(n)$ = 2×2 -2×1 - 2×1 - 2×13 + 4×3 = -14 = 2 (mod 8), but $P(9) = 154 \equiv 2 \pmod{8}$.

:.
$$P(9) \equiv 2 d_{1,4}(9) - 2 d_{3,4}(9) - 2\chi(9) - 2\sigma(9) + 4d(9) \pmod{9}.$$

We can conclude that, $P(n) \equiv 2d_{1,4}(n) - 2d_{3,4}(n) - 2\chi(n) - 2\sigma(n) + 4d(n) \pmod{8}$. [Byungchan Kim(2009)]

G) If
$$n = 10 = 2.5 = 2^{a}5^{r_{1}}$$
 where $a = 1$ and $r_{1} = 1$

 $\therefore \sigma(10) = (2^2 - 1)(5^0 + 5^1) \text{ but } \sigma(10) = \frac{2^2 - 1}{2 - 1} \cdot \frac{5^2 - 1}{5 - 1}$ $= 3 (1 + 5) = \frac{3}{1} \cdot \frac{24}{4}$ = 18 = 18

We can conclude that

$$\sigma(n) = \left(2^{a+1} - 1\right) \prod_{i} \left(\sum_{m=0}^{r_i} p_i^m\right) \prod_{j} \left(\sum_{m=0}^{s_j} q_j^m\right). \text{ [Andrews (1967)]}$$

H) We get,
$$n = 9 = 3^2 = 2^a \cdot 3^{s_1}$$
 where $a = 0$ and $s_1 = 2$

$$\sigma(9) = \frac{3^2 - 1}{3 - 1} = \frac{26}{2} = 13 \equiv 1 \pmod{4} = (0 + 1) \equiv (r_1 + 1) \pmod{4},$$

again if
$$n = 10 = 2.5 = 2^{a} \cdot 5^{r_{1}}$$
 where *a* = 1 and $r_{1} = 1$

$$\sigma(10) = \frac{2^2 - 1}{2 - 1} \cdot \frac{5^2 - 1}{5 - 1} = 3 \cdot \frac{24}{4} = 18 \equiv 2 \pmod{4} \equiv 6 \pmod{4} = 3 \cdot 2 = 3(1 + 1)$$
$$\equiv 3(\mathbf{r_1} + 1) \pmod{4}.$$

We can write that

$$\sigma(n) \equiv f(r_1 + 1)..., (r_k + 1) \pmod{4} \text{ if } a = 0$$

$$\Im(r_1 + 1)..., (r_k + 1) \pmod{4}, \text{ otherwise. [Fortin et al (2005)]}$$

THEOREM

Let *n* be an integer, then

- 1) $\overline{P}(n) \equiv 0 \pmod{8}$, where n is not a square of an odd integer or an even integer and is not a double of a square.
- 2) $\overline{P}(n) \equiv 2 \pmod{8}$, if n is a square of an odd integer.

3) $\overline{P}(n) \equiv 4 \pmod{8}$, if n is a double of a square

4) $\overline{P}(n) \equiv 6 \pmod{8}$, if n is a square of an integer.

Proof: From above we get;

$$\chi(n) = \begin{cases} 1, \text{ when n is a square of an integer,} \\ 0, \text{ otherwise.} \end{cases}$$

$$\overline{P}(n) \equiv 2 \ (d_{1,4}(n) - d_{3,4}(n)) - 2\chi(n) - 2\sigma(n) + 4d(n) \ (\text{mod } 8), \dots \ (1)$$

where, $d_{i,4}(n)$ is the number of the divisors which are congruent to i modulo 4.

Now we will consider the three cases according to the parity of $\,r_{_{\rm i}}\,$ and $\,s_{_{\rm j}}\,$

Case 1: There is an s_j that is odd and r_i is any integer, then

From

$$\begin{array}{l} d_{1,4}(\mathbf{n}) - d_{3,4}(\mathbf{n}) = 0 \ \ \chi(\mathbf{n}) = \mathbf{0} \ \ \text{and} \ \ d(\mathbf{n}) \equiv 0 \ \ (\text{mod } 8). \end{array}$$
From (1), we get
$$\overline{P}(n) \equiv 2 \ (d_{1,4}(n) - d_{3,4}(n)) - 2\chi(n) - 2\sigma(n) + 4d(n) \ \ (\text{mod } 8), \\ \equiv 0.2 \times 0.2 \sigma(\mathbf{n}) + 0 \ \ (\text{mod } 8) \\ \text{or } \overline{P}(n) \equiv -2 \sigma(\mathbf{n}) \ \ (\text{mod } 8) \ \dots (2) \\ \text{[since if } \mathbf{n} = 6 = 2.3 = 2^{a}.3^{s_{1}} \ \text{where } \mathbf{a} = 1 \ \text{and} \ s_{1} \ \text{in an odd integer, then} \\ d_{1,4}(6) - d_{3,4}(6) = 0 \ \text{and} \ \chi(6) = 0 \ \text{where } 6 \ \text{is not a square,} \\ \text{and} \ d(6) = d(2.3) = (1+1) \ (1+1) = 4 \\ \therefore \qquad 4 \ d(6) = 4.4 = 16 \equiv 0 \ \ (\text{mod } 8)]. \end{aligned}$$
relation G) we get;
$$\sigma(n) = \left(2^{a+1} - 1\right) \prod_{i} \left(\sum_{m=0}^{r_{i}} p_{i}^{m}\right) \prod_{j} \left(\sum_{m=0}^{s_{j}} q_{j}^{m}\right) \ \text{[Berndt(2006)]} \\ \text{[since } s_{j} \ \text{'s are odd integers, so} \ \sum_{m=0}^{s_{j}} q_{j}^{m} \equiv 0 \ \ (\text{mod } 4). \end{aligned}$$

$$\therefore \quad \sigma(n) \equiv o \pmod{4} \text{ and } 2 \ \sigma(n) \equiv 0 \pmod{8}.$$

From (2) we can conclude that $\overline{P}(n) \equiv 0 \pmod{8}$ for such *n*.

Case 2: All s_i 's are even and there is an r_i that is odd.

Then, $d_{1,4}(n) - d_{3,4}(n) = (r_1 + 1)...(r_k + 1), \chi(n) = 0$ where n is not a square and 4 $d(n) \equiv 0 \pmod{8}$.

From (1) we get;

$$\overline{P}(n) \equiv 2 \ (r_1 + 1) \dots (r_k + 1) - 2 \ \sigma(n) \ (\text{mod } 8) \dots (3)$$
[since if $n = 5, 3^2 = 45 \ d(45) = d(5.3^2) = (1+1).(2+1) = 2.3 = 6$

$$\therefore 4 \ d \ (45) = 4.6 = 24 \equiv 0 \ (\text{mod } 8)$$
]

and $\sigma(n) \equiv (r_1 + 1)...(r_k + 1) \pmod{4}$, where s_j 's are even r_i 's are odd and a =0.

From (3), we can conclude that

 $\overline{P}(n) \equiv 0 \pmod{8}$, where *n* is not a square of an odd integer or an even integer and is not a double of a square. Hence the Theorem 1.

[Numerical example 1: If n is not a square of an odd integer or an even integer and is not a double of a square. We get; $\overline{P}(3) = 8$, $\overline{P}(5) = 24$, ...

$$\therefore \overline{P}(3) = 8 \equiv 0 \pmod{8} , \ \overline{P}(5) = 24 \equiv 0 \pmod{8}, \dots$$

We can conclude that $\overline{P}(n) \equiv 0 \pmod{8}$, for such *n*.]

Case 3: All the r_i 's and s_i 's are even.

Suppose that a is o. Then n is a square.

crossref 🔤 Prefix 10.18034

By (1) we deduce that

 $P(n) \equiv 2 \ (r_1 + 1) \dots (r_k + 1) - 2 - 2 \ \sigma(n) + 4 \ (\text{mod } 8) \dots (4)$

[since $d_{1,4}(n) - d_{3,4}(n) = (r_1 + 1) \dots (r_k + 1)$ where s_j 's are even and $\chi(n) = 1$ where n is a square of an integer, d(n) \equiv 1 (mod 8) and also, $\sigma(n) \equiv (r_1 + 1)...(r_k + 1) \pmod{4}$ where \mathbf{r}_i 's and \mathbf{s}_i 's are even and also a = 0]

From (4) we get;
$$\overline{P}(n) \equiv 2 (r_1 + 1) \dots (r_k + 1) + 2 \cdot 2 (r_1 + 1) \dots (r_k + 1) \pmod{8}$$
.

 $\overline{P}(n) \equiv 2 \pmod{8}$, when n is a square of an odd integer. Hence the Theorem 2. · . [Numerical example 2: If *n* is not a square of an odd integer,

We get;
$$P(1) = 2$$
, $P(9) = 154$,...

$$\therefore \quad \overline{P}(1) = 2 \equiv 2 \pmod{8} , \quad \overline{P}(9) = 154 \equiv 2 \pmod{8}, \dots$$

We can conclude that $\overline{P}(n) \equiv 2 \pmod{8}$, for such *n*.] Suppose that a is odd. Then n is a double of square.

From (1) we get;

$$\overline{P}(n) \equiv 2 (r_1 + 1) \dots (r_k + 1) - 2\sigma(n) \pmod{8}. [Berndt(2006)]$$

[since $d_{1,4}(n) - d_{3,4}(n) = (r_1 + 1) \dots (r_k + 1)$ where r_i 's and s_j 's are even integers.

 χ (n) = 0, where n is not a square of an integer.

If $n = 2.3^2.5^2$ \therefore d (n) = (1+1). (2+1). (2+1)=18^2

$$\therefore$$
 4d (n) = 4.18=72 = 0 (mod 8)]

$$\therefore P(n) \equiv 2 (r_1 + 1) \dots (r_k + 1) - 2.3 (r_1 + 1) \dots (r_k + 1) \pmod{8}$$

[since $\sigma(n) \equiv 3(r_1 + 1)...(r_k + 1) \pmod{4}$, where a is not zero]

$$\overline{P}(n) \equiv -4 \ (\mathbf{r}_1 + 1) \dots (\mathbf{r}_k + 1) \ (\text{mod } 8)$$
$$\equiv 4 \ (\mathbf{r}_1 + 1) \dots (\mathbf{r}_k + 1) \ (\text{mod } 8)$$
$$\equiv 4 \ (\text{mod } 8)$$

[since r_i 's and s_j 's are even integers so, $(r_1 + 1)...(r_k + 1) \equiv 1 \pmod{8}$ [Fortin et al (2005]

 $\overline{P}(n) \equiv 4 \pmod{8}$, when n is a double of a square. Hence the Theorem 3. ·.

[Numerical example 3: If *n* is a double of a square. We get; $\overline{P}(2) = 4$, $\overline{P}(8) = 100$, ...

$$\therefore \overline{P}(2) = 4 \equiv 4 \pmod{8} , \ \overline{P}(2.4) = 100 \equiv 4 \pmod{8}, \dots$$

We can conclude that $\overline{P}(n) \equiv 4 \pmod{8}$, for such *n*.]

Suppose that a is even. Then n is a square of an even integer.

From (1) we get; $P(n) \equiv 2 (r_1 + 1) \dots (r_k + 1) - 2 - 2 \sigma(n) + 4 \pmod{8}$

[since $d_{1,4}(n) - d_{3,4}(n) = (r_1 + 1)...(r_k + 1)$ where r_i 's and s_j 's are even integers, $\chi(n) = 1$, where n is a square of an integer and $d(n) \equiv 1 \pmod{8}$]. or $\overline{P}(n) \equiv 2 (r_1 + 1)...(r_k + 1) + 2 \cdot 2 \cdot 3 (r_1 + 1)...(r_k + 1) \pmod{8}$ [since $\sigma(n) \equiv 3 (r_1 + 1)...(r_k + 1) \pmod{4}$, where $a \neq 0$] or $\overline{P}(n) \equiv -4 (r_1 + 1)...(r_k + 1) + 2 \pmod{8}$ $\equiv 4 (r_1 + 1)...(r_k + 1) + 2 \pmod{8}$ $\equiv 4.1 + 2 \pmod{8}$ [since r_i 's and s_j 's are even integers so $(r_1 + 1)...(r_k + 1) \equiv 1 \pmod{8}$].

 \therefore $\overline{P}(n) \equiv 6 \pmod{8}$, when n is a square of an even integer. Hence the Theorem 4. [Numerical example 4: If *n* is a square of an even integer. We get; $\overline{P}(4) = 14, ...$

$$\therefore \overline{P}(4) = 14 \equiv 6 \pmod{8}, \dots$$

We can conclude that $\overline{P}(n) \equiv 6 \pmod{8}$, for such *n*.]

CONCLUSION

In this study we have analyzed various relations $\overline{P}(n) = \sum_{k} 2^{k} p_{k}(n), \ \overline{P}(3n+2) \equiv 0 \pmod{4}$,

respectively with the help of numerical examples. We have verified the four Theorems about overpartitions modulo 8 with numerical examples.

ACKNOWLEDGMENT

It is a great pleasure to express my sincerest gratitude to our respected professor Md. Fazlee Hossain, Department of Mathematics, University of Chittagong, Bangladesh.

REFERENCES

Ahmad, M. (2013). Homogeneous Number System and Reciprocal Symmetric Algebra. Asian Journal Of Applied Science And Engineering, 2(1), 92-99. Retrieved from http://journals.abc.us.org/index.php/ajase/article/view/2.10%28M%29

- Ahmad, M., & Talukder, M. (2013). Correspondence between Reciprocity and Discreteness. Asian Journal Of Applied Science And Engineering, 2(1), 16-19. Retrieved fromhttp://journals.abc.us.org/index.php/ajase/article/view/2.2M%26G
- Alladi K., A fundamental invariant in the theory of partitions, in: Topics in Number Theory (University Park, PA, 1997), Kluwer Acad, Pubi, Dordrecht, 1999, pp.101-113
- Andrews G.E., Enumerative proofs of certain q-identities, Glasg. Math.J.B(1967)33-40
- Berndt B.C., Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, RI, 2006.
- Byungchan Kim, A short note on the overpartition function, Discrete Mathematics 309, (2009), 2528-2532.
- Das S, Mohajan HK. The Number of Vector Partitions of n (Counted According to the weight) with the Crank m International Journal of Reciprocal Symmetry and Theoretical Physics. 2014;1(2):91-105.
- Das, S. (2014). Congruence Properties of Andrews'SPT- Function. *ABC Journal Of Advanced Research*, 3(2), 47-56. Retrieved from http://journals.abc.us.org/index.php/abcjar/article/view/6.5
- Duviryak A. Bound States in the Compactified Gravity International Journal of Reciprocal Symmetry and Theoretical Physics. 2014;1(2):80-90.
- Fortin J.F., Jacob P., Mathieu P., Jagged partitions, Ramanujan J. 10 (2005) 215-235.
- Lovejoy J. and Osburn R., Rank differences for overpartitions, Q.J.Math. 59(2), 257-273,2008.
- Mohajan HK. Gravitational Collapse of a Massive Star and Black Hole Formation International Journal of Reciprocal Symmetry and Theoretical Physics. 2014;1(2):125-140.
- Mohajan, H. (2014). Upper Limit of the Age of the Universe with Cosmological Constant. International Journal Of Reciprocal Symmetry And Theoretical Physics, 1(1), 43-68. doi:10.15590/ijrstp/2014/v1i1/53723
- Talukder, M., & Ahmad, M. (2013). Wave Particle Dualism for Both Matter and Wave and Non-Einsteinian View of Relativity. Asian Journal Of Applied Science And Engineering, 2(1), 80-91. Retrieved fromhttp://journals.abc.us.org/index.php/ajase/article/view/2.9G%26M

Source of Support: Nil, No Conflict of Interest: Declared

This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial.

Copyright © CC-BY-NC 2014, Asian Business Consortium | E/