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ABSTRACT 

Free vibrating motion can take place in an acoustic media. This motion can be 
steady hence have constant periodic variations or unsteady and thus 
experience light damping or heavy damping. We give a modeled analysis of 
unsteady periodic motion of an oscillator in a cylindrical acoustic medium that 
allow such waves to be transmitted through them. This has been approached 
by calculating variation within the proposed boundary functions and 
boundary potentials. Limitations for these calculations have been done 
depending on the time, and how free oscillations are expected to behave in 
cylinder carrying a suspended mass. This work investigated motion by 
constructions that interact with their environment with the acoustic media.  
Since the dynamics considered here were very complex, modeling the system 
with one grade of free motion and applying different types of constructions 
whether ground, underground, cylindrical, spherical constructions and 
containers was considered. This work borrowed heavily on the modeling of 
seismic and blast waves as modeled with rigid inclusions containing elastically 
fastened mass interacting continuous solid medium. This study joined motion 
of any continuous medium with other discrete systems. The results displayed 
measurement systems for wave processes having interference at their eigen- 
frequencies just like those under seismic wave interactions and this work 
considered the result as similar to those in discrete systems.  
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INTRODUCTION 

Modern engineering and construction industries require the calculation of the effect of 
structural elements of constructions on the motion of waves in the medium surrounding 
the body (Huang etal, 1974). The investigations onto the behavior of small systems where 
the complementary masses are fastened are of great interest in vibratory technology and 
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the focus has been on the questions of estimating the damping ability of dynamical system 
and its impacts (Seyfullayev and Аgayeva, 1998).  Many studies have been that if the 
rigidity of the shell is larger than the rigidity of shock absorbers, springs, any shell 
deformation is always ignored (Seyfullayev etal, 2012).  As a consequence, the effect of 
loads located in the cylindrical shell to the behavior of the shell at the interaction with the 
spherical wave of pressure need more investigation.  

METHODOLOGY  

A system of loads having concentrated masses was attached to the inner surface of the 
shell by help of elastic springs. A steel shell by help of elastic springs was immersed in 
water. The rigid cylindrical inclusion (a steel shell) was elastically suspended mass in its 
inner is studied as shown in figure 1 and was assumed to periodically and continuously in 
the medium which was water. 

   

Numerical calculations were then carried out by applying spherical exponentially wave 
profile. Any diffraction of the generated elastic waves in water having a free surface, though 
fastened to the platform by a spring and any at the action of the harmonic loading were 
investigated. The motion the oscillator in this acoustic medium after the passage of the wave 
was also investigated by using eigenfrequencies (Huang etal, 1974). Investigations were also 
done to find out if the system can also be in resonance by action of external vibration sources. 

RESULTS AND DISCUSSIONS  

Numerical Analyze 

Due to the complexity of analysis, the system was considered as being flat and he medium 
as irrotational (Gorshkov and Tarlakovskii, 1990). With this assumption, sound generated 
has a change in velocity potential in the acoustic cylinder described by the Eq (1):  

2

2

2

1

ta 





 ,                                                       (1) 

where  - Laplace’s operator; a is velocity of sound distribution in the medium inside 

the steel shell,  - is velocity potential  in which the operation  grad


 gives 


-

velocity (Seyfullayev and Аgayeva, 1998; Seyfullayev etal, 2012). Assuming also that there 

no wave transient and hence no diffraction, the waves moves in the same direction with 
the certain velocity. Applying the principle of relativity for this sound wave, where the 
medium is not moving but has the velocity of the fluid (Mamedova etal, 2013; Agalarova, 
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1997). Then the motion experienced by the medium inside the shell (M2) and that outside 
the shell (M1) can be described by;  
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where 
1

M  is regarded here as the cage mass while 
2

M is regarded as the mass of the 

spring body. Equally 
1

x as the replacement of the cage while 
2

x  as replacement of the 

spring body while L as rigidity of the spring and P  as the power of the fluid’s action on 

the shell (Seyfullayev etal, 2014; Sinyavskii, 1980). If we take  density and   - polar 

angle  and since we had a cylinder, then for the cylindrical inclusion with radius 
0

r , 

power of the fluid on the shell can be given as; 
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Since the springs used were identical, normal components of the velocity to the cage 
surface are equal (Chen etal, 1976; Seyfullayev and Agayeva, 1998). This means that the 
components of the velocity of the fluid and the cage can be equated as:  
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dt
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                                                               (4) 

Using Eq (1) within the restriction of boundary conditions in Eq (2) and solving Eq  (3) and 
Eq (4) by applying initial conditions as; 
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then Eq (1) in cylindrical coordinates can  be expressed as: 
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In polar coordinates, a trial solution to Eq (6) can be given in the form:  

 cos  t)(r,    =  t),  (r,   1                                   (7)  

Solving Eq (6) using Laplace’s operators get: 
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If we apply Laplace-Carson transformation to Eq (8) and the condition in eq (5) we get;  
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A simplified solution to Eq (9) requires a restriction condition of infinity in the form of; 
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 Where r- distance  from the cage center, K1- Macdonald’s functionof the first order. And  
thus, taking into

 

account Eq (7), it followsfrom Eq (3) that; 
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Equally, considering the expressions for Eq (11); Eq  (4) and Eq (7) into Eq (2), then Eq (2) 
will take the form: 
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Using the Laplace- Carson transformation, expressions in Eq (12) can take the form: 
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where 0x is assume to be the initial velocity of the shell. Since we applied the restriction 

condition of infinity (Seyfullayev and Аgayeva, 1998; Agalarova, 1997; Sinyavskii, 1980) to 
get Eq (10) then from Eq (13) we can get C expressed as;
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Where K0 is the Macdonald’s function of the zero order or we can rewrite Eq (14) in the 
form of Eq (15): 
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Eq (15) modifies the original which we can now easily get by equating;  

;
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By simplicity, we can let the original denominator by , аnd  respectively, we 

obtain;  

 

and by a way of  introducing

  
we finally arrive at: 
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As a modeled expression Eq (15b) can be used to analyze some particular cases for some 
values of parameters having defined boundary functions.  

NUMERICAL ANALYSIS USING DEFINED BOUNDARIES 

CASE 1: Boundary conditions by letting 01 M  

We can take the first boundary condition (Seyfullayev etal, 2012) by letting 01 M . For 

this particular case Eq (14) reduced to: 
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Following the condition in Eq 16) by denoting the denominator originals as z, we get a 
solution (Huang etal, 1974) expresses as:  
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And by integrating we get : 
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CASE 2: Boundary condition by letting 2,, 21*   eMM   

Using Eq (15а) which had the expression given by: 
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This expression can further be analyzed numerically by letting 
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SIMULATION METHOD 

Softwares have been developed that analyze coupled oscillation by simulation. In our case, 
the considered experiment was assumed to be flat and therefore the motion of the fluid is 
potential. This means that the equation of the motion of the fluid is a wave Eq (1) applies 
also to simulation approach (Seyfullayev etal, 2014; Agalarova, 1997). In programming the 
simulator, the area of contact of the fluid with the moving cylinders, the normal 
components of the velocity of the fluid and the shell are taken as equal. This condition 
then reduces the experiment as to have harmonic vibrations of the system obeying 
transcendental equations for its frequencies. These assumptions reduce the problem to a 
level where the software used the inverse method (Sinyavskii, 1980) i.е. frequency of the 
system without any fluid (oscillator) is expressed analytically by the frequency of the main 
system, not solving the transcendental equations. When the software is run, calculation of 
eigen frequencies and amplitudes of vibrations of the elastic element (Seyfullayev etal, 
2012; Seyfullayev and Agayeva, 1998) in the fluid are done. Software was used and the 
following graphs were obtained. As observed from figure 1 and 2 below, the graphs of 
dependencies of the boundary function S and potential  on the time for density values 

taken as 1 and 2 and the mass of the vibrating body taken as

5,0;
3

2
;1;2

1


M
m . 

 
Fig. 3: Boundary Sand potential  with density value 2  



Mosiori: Modeling Damping for a Loaded Spring in an Acoustic Liquid Media                                                                                                                   (9-18) 

Page 16                                                                                                                          Engineering International, Volume 4, No 1 (2016) 

 
It can be observed from the graphs that function S vibrates after the initial deflection with 
attenuation approaching to zero, but potential  with vibrations approaches a constant 

value for each density  at different relative internal masses when taken as
M

1
 at small 

amplitudes (Seyfullayev etal, 2012). Assuming that the medium from the external side is 

restricted by unmoving surface ( 1rr  ) or in the case of the unrestricted medium on the 

surface ( 1rr  ) there will be a node of standing wave (Seyfullayev etal, 2014) obtained by 

a restriction given by;
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In order to find eigen frequencies of the system, we can now apply the method of 
separation of variables (Mamedova etal, 2013) and this gives a solution of Eq (6) in the 
form Eq (21): 
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since this expression can also be taken as Eq (12), its solution for Eq (22) can take the form 
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where E and D are also unknown which must be determined. Hence we need to apply the 
Bessel and Neumann cylindrical functions (Seyfullayev and Аgayeva, 1998; Agalarova, 
1997). Considering; 
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as Bessel and Neumann cylindrical function and solving for expressions Eq (21)  by 
substituting it into Eq (2) and in Eq (4) and by taking into account Eq (3) we easily get the 
system of algebraic homogeneous equations in relation to constants Е, В, С,  and D stated 
in Eq (21) Eq (23) respectively as: 
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Bessel and Neumann functions require non-trivial solutions (Seyfullayev etal, 2012) of 
system to Eq (24) and thus we take the main determiner of the named system to zero so as 
to obtain; 
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This gives a frequency equation of the form of Eq (26) : 
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As a rule, we introduce the following denotations to simplify analysis: 
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With this simplified conditions, Eq (26) takes the following form: 
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(27) 
From Eq (26) we can use dimensionless quantities by introducing the following 
denotations:    
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In essence therefore Eq (27) takes a simpler form as Eq (28) expressed as: 
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where F1 is expressed as; 
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and F2 expressed as; 
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Eq (28) is a simulation expression connecting the frequency of the system with the free 
frequency of the any shell without a fluid in it and can be used in finding of the 
frequencies of eigen oscillations of the system is connected in the whole to the solution of 
transcendental as expressed in Eq (27). In general approximate methods, simulation show 
asymptotical behaviuor. However, a numerical solution using the inverse problem allows 
building the spectrum of graphs using software and this is what simplifies the 
investigation hence easy to determine frequency when using softwares.  
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