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ABSTRACT 

This paper discusses aspects of a naked singularity. If a star has exhausted its 
nuclear fuel, and it exceeds Chandrasekhar limit then it must undergo 
gravitational collapse and ultimately it forms black hole. A black hole is a 
space from where no massive particle or no signal comes to the external 
observer. As a result space-time singularity is formed; this must be hidden 
behind the black hole region which is called the cosmic censorship 
hypothesis, first proposed by Roger Penrose, which cloths the singularity to 
remain invisible to the external observers. It has not been possible, to obtain 
a proof despite many attempts to establish the validity of cosmic censorship 
and it remains an open problem. Hence, general relativity supports that 
naked singularity may be formed. A naked singularity implies that 
singularity is visible to an external observer. Sometimes it is not visible to the 
external observers, but it could be observable to the interior observers of the 
black hole region. This type of singularity is called local naked singularity. 
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INTRODUCTION 

In 1969, Roger Penrose first posed a hypothesis that there exists a cosmic censor hypothesis 
that forbids occurrence of naked singularities. There are two versions of cosmic 
censorship: i) a strong one and ii) a weak one (Penrose 1969). The strong version says that 
space-time is globally hyperbolic. The weak version says that the intersection of the causal 
future of a partial Cauchy surface and the causal past of the boundary at infinity is 
globally hyperbolic (Kr´olak 1999). 

Space-time singularities can be divided into two kinds, according to whether or not they 
can be observed. An observable space-time singularity is called a naked singularity that is 
not hidden by horizons, and a space-time singularity that cannot be observed is a black 
hole singularity. The horizon is the boundary of the black hole region which is cutoff from 
the outside world. The appearance of a naked singularity represents the formation of an 
observable high-curvature, strong-gravity region (Harada et al. 2002).  
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Singularities also form without or before formation of a trapped surface or an event 
horizon. If such a singularity forms, then non-spacelike geodesics come out of it and in 
principle the singularity can be visible to an outside observer. There is a conjecture that 
gamma ray bursts originate from such naked singularities (Witten 1992).  

The singularity theorems do not prove that collapse will definitely end in a black hole. The 
alternative to a black hole is a naked singularity. If a singularity is naked, light rays 
starting at the singularity could escape all the way to infinity. Both black holes and naked 
singularities can form in collapse, depending on the choice of initial conditions (Singh 
1997). According to Lorentzian geometry naked singularity is a timelike ideal point of the 
boundary of space-time that is visible for the existence of the outgoing radial null 
geodesics from the singularity (Hawking and Ellis 1973).  

At present there are many investigations supporting the cosmic censor hypothesis as well 
as many examples of existence of naked singularities. We cannot predict laws of physics at 
a singularity; hence existence of a naked singularity can lead to breakdown of 
predictability. Hence naked singularities would be a disaster for general relativity and as 
well as for physics (Christodoulou 1999, Harada 2004, Deshingkar 2010). 

OBJECTIVES OF THE STUDY 

The objectives of the study are to discuss naked singularity and also black hole singularity. 
At present it is not known that the singularity must be either hidden within an event horizon 
of gravity or visible to the external observers. To discuss the naked singularity we have first 
highlighted on general relativity and discuss briefly the gravitational collapse of a massive 
star. If a star has exhausted its nuclear fuel then it must undergo gravitational collapse. 
Roger Penrose’s cosmic censor hypothesis forbids the occurrence of naked singularities. But 
cosmic censor hypothesis has not been established in physics with strong evidence. So, the 
demand of naked singularity is not illogical in general relativity. The objective of the study is 
to make easier to the common readers to understand the concept of naked singularity. 

HIGHLIGHTS ON GENERAL RELATIVITY 

By the covariant differentiations of vectors, we can write the relation (Mohajan 2014a); 
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is a tensor of rank four and called Riemann curvature tensor. From (1) we observe that the 
curvature tensor components are expressed in terms of the metric tensor and its second 
derivatives. From (2) we get; 
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Contraction of curvature tensor (2) gives Ricci tensor; 
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



 RgR  .       (5) 

Further contraction of (5) gives Ricci scalar; 



 RgR ˆ .        (6) 

From which one gets Einstein tensor as; 
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where   0;  





 GGdiv . The space-time  gM ,  is said to have a flat connection if 

and only if; 

0

R .        (8) 

This is necessary and sufficient condition for a vector at a point p to remain unaltered after 
parallel transported along an arbitrary closed curve through p. This is because all such 
curves can be shrunk to zero, in which case the space-time is simply connected (Hawking 
and Ellis 1973). 

The energy-momentum tensor 
T  is defined as; 

  uuT 0         (9) 

where 0  
is the proper density of matter, and if there is no pressure. A perfect fluid is 

characterized by pressure  xpp  , then we get; 

    pguupT   .      (10) 

The principle of local conservation of energy and momentum states that; 

0; 

T .        (11) 

According to the Newton’s law of gravitation, the field equations in the presence of matter 
are; 

 G 42          (12) 

where   is the gravitational potential,   is the scalar density of matter, G is the 

gravitational constant. By (12) the Einstein’s field equation can be written as; 
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where 21311 skgm10673.6 G  is the gravitational constant and 
810c m/s is the 

velocity of light. Einstein introduced a cosmological constant  0  for static universe 

solutions as; 
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In relativistic unit  1 cG , hence in relativistic units (14) becomes; 

  TRgR  8
2

1
  .                   (15) 

It is clear that divergence of both sides of (14) and (15) is zero. For empty space 0T , 

so that,  gR  , then; 

0R  for 0        (16)  

which is Einstein’s law of gravitation for empty space. 

DEFINITIONS OF SINGULARITY AND NAKED SINGULARITY 

First we discuss some definitions related with singularity as follows (Mohajan 2013a): 

Definition: The generalized affine parameter (g.a.p.) length of a curve   Ma ,0:  

with respect to a frame,  
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a
EE  

at   0  is given by; 

     dssEg

a

i
i

2
1

0

3

0

   











 E  

where 
ds

d
   is tangent vector and  sE  is defined by parallel propogation along the 

curve, starting with an initial value  0E .  

Definition: A curve   Ma ,0:  is incomplete if it has finite g.a.p. length with respect 

to some frame E  at  0 . If   E , then if we take any other frame E  at  0  we 

have    E . This is because the corresponding parallel propogated frames satisfy;  
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for a constant Lorentz matrix L  and hence; 
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Definition: A curve   Ma ,0:  is termed inextensible if there is no curve 

  Mb  ,0:  with ab   such that     a,0 .  This is equivalent to saying that 

there is no point p  in M  such that   ps   as as  i.e.,   has no end point in M . 

Einstein’s empty space equation (16) is R = 0. From this we can the Schwarzschild 

metric;  
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where there are two singularities at 0r  and mr 2 , because one of the 
g  or g  

is not continuously defined. Here 0r  is a real singularity in the sense that along any 

non-spacelike trajectory falling into the singularity as r , the Kretschman scalar 



 RR  tends to infinity and mr 2  is a coordinate singularity and could be 

removed by the coordinate transformation. After some efforts it is realized that mr 2  is 

not a genuine space-time singularity but merely a coordinate defect, and what was really 
needed was an extension of the Schwarzschild manifold. Such an extension of the space-
time was obtained by Kruskal and Szekeres (Kruskal 1960, Szekeres 1960) and this may be 
regarded as an important insight involving a global approach. 

Let us consider the metric;  

2222

2

2 1
dzdydxdt

t
ds         (18) 

which is singular on the plane 0t . If any observer starting in the region 0t  tries to 

reach the surface 0t  by traveling along timelike geodesics, he will not reach at 0t  in 

any finite time, since the surface is infinitely far into the future. If we put  tt  log  in 

0t  then (18) becomes; 

22222 dzdydxtdds        (19) 

with  t  which is Minkowski metric and there is no singularity at all, which is a 

removable singularity like Schwarzschild singularity at mr 2  (Mohajan 2013c). Let us 

consider a non-spacelike geodesic which reaches the singularity in a proper finite time. 
Such a geodesic will have not any end point in the regular part of the space-time. A 
timelike geodesic which, when maximally extended, has no end point in the regular space-
time and which has finite proper length, is called timelike geodesically incomplete (Joshi 
2013). 

The Friedmann-Robertson-Walker (FRW) model is given by (Mohajan 2013b);  
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where  tS  is the scale factor and k is a constant which denotes the spatial curvature of 

the three-space and could be normalized to the values +1, 0, –1.  

 

Figure 1: The behavior of the curve  tS  for the three values 1 ,0 ,1 k ; the time 

0tt 
 
is the present time and 1tt 

 
is the time when  tS  reaches zero again for 1k . 

When 0k  the three-space is flat and (20) is called Einstein de-Sitter static model, when 

1k and 1k  the three-space are of positive and negative constant curvature; these 

incorporate the closed and open Friedmann models respectively (figure 1).  

The Einstein equations imply that 03  p  at all times, where   is the total density 

and p is the pressure, there is a singularity at 0t , since   02 tS  when 0t  in the 

sense that curvature scalar 
 RRR ˆ  bends to infinity. Here we consider the time 

0t  is the beginning of the universe. Thus there is an essential curvature singularity at 

0t  which cannot be transformed away by any coordinate transformation. 

Definition: A space-time is incomplete if it contains an incomplete inextensible curve. By 
the above definitions we can say that a space-time is called incomplete if it contains an 
incomplete timelike inextensible curve. The Friedman ‘big bang’ models are geodesically 
incomplete, since the curve defined by (Clarke 1993); 

    stSs 
0

   

  i
s Constant, i = 1, 2, 3;  

is a geodesic which is incomplete, having no endpoint in M as  tSs  . Minkowski 

space is not incomplete. The region mr 2  in the Schwarzschild metric is incomplete, 

while region mr 20    is not a space-time, since the metric is not defined at mr 2 .  

Definition: An extension of a space-time  gM ,  is an isometric embedding 

MM :  where  gM ,  is a space-time and   is onto a proper subset of M  . By 
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the above definition Schwarzschild metric is not singular at mr 2  by Kruskal-Szekeres 

extension (Kruskal 1960, Szekeres 1960, Mohajan 2014a). A space-time is termed extensible 
if it has an extension.  

Definition: A space-time is singular if it contains an incomplete curve   Ma ,0:  

such that there is no extension MM :  for which    is extensible. 

A singularity which can causally influence parts of space-time is called a naked 
singularity. The weak censorship or the strong asymptotic predictability requirement 
states that the region of space-time outside a black hole must be globally hyperbolic. The 
weak censorship states that the singularity cannot be globally naked. But it could be 
locally naked in the sense that an observer within the event horizon and in the interior of 
black hole could possibly receive particles or photons from the singularity. 

GRAVITATIONAL COLLAPSE  

In 1939, Oppenheimer and Snyder gave the first model of gravitational collapse. They 
showed that the collapse of a homogeneous dust sphere results in the formation of a black 
hole. The density of the sphere remains uniform throughout the evolution, and after a 
certain comoving time the boundary of the star shrinks below the Schwarzschild radius. 
At a later epoch, all the dust shells shrink to zero radius at exactly the same comoving 
time. As a result the density diverges and a curvature singularity forms which is hidden 
behind the event horizon (Singh 1997).  

When the star is heavier than a few solar masses, it could undergo an endless gravitational 
collapse without achieving any equilibrium state. This happens when the star has 
exhausted its internal nuclear fuel which provides the outwards pressure against the 
inwards pulling gravitational forces. This creates a black hole in the space-time which 

covers the space-time singularity. In the Schwarzschild metric, at 0r , the curvature 

and density is infinite, the singularity is completely hidden within the trapped surface 
region. So, no signal from the singularity could go out to any observer at infinity, and the 
singularity is disconnected from the outside observers (Joshi 1996, Mohajan 2014b). 

ANALYTICAL DISCUSSION OF NAKED SINGULARITY 

In the very final stages of the collapse of the collapsing matter the collapse would be 
largely radiation dominated. Here we will examine the final fate of such a collapse with 
special reference to the occurrence of naked singularities and the cosmic censorship 
hypothesis. For this the following conditions are necessary (Joshi 1996):  

The naked singularity has to be visible at least for a finite period of time to any far away 
observer. The singularity must be gravitationally weak, creating a mere space-time 
pathology, but must be a strong curvature singularity in a suitable sense (Mohajan 2013a). 
So, the space-time does not admit any continuous extension through the singularity in a 
meaningful manner. The form of matter should be reasonable in that it must satisfy a 
suitable energy condition ensuring the positivity of energy and collapses gravitationally 
from an initial spacelike hypersurface with a well-defined non-singular initial data. The 

imploding radiation is described by the Vaidya space-time, given in   ,,,rt  

coordinates (Vaidya 1943, 1951) as; 
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where 
2222 sin  ddd   . 

The null coordinate v denotes the advanced time and  vm  is an arbitrary non-negative 

increasing mass function. Equation (21) is also known as the radiating Schwarzschild 
space-time, describes the geometry outside a radiating spherically symmetric star 
(Mkenyeleye et al. 2014). 

The stress energy tensor for the radial flux of radiation is; 




 kk
dv

dm

r
kkT .

 4

1
 

2
 ,     (22) 

with 


 k , 0

kk , 

which represents the radially injected radiation flow into an flat and empty region, which 
is focused into a central singularity of growing mass by a distance source (figure 2). The 

source is turned off at a finite time T , where the field settles to the Schwarzschild space-

time for  Tv   with mass   Tmm 0  by way of the Vaidya metric (21). Assume  vm  

to be a linear function, the central singularity 0v , 0r  was studied by Papapetrou 

(1985) and Kurada (1984), who showed that it will be naked and persistent when the 
collapse is sufficiently slow. Hiscock et al. (1982) considered the situation when the space-
time admits marginally naked singularity, where the Cauchy horizon coincides with the 
event horizon allowing only an isolated null trajectory to escape to infinity; and studied 
the particle creation by such a naked singularity. We now examine the structure and 
curvature strength of naked singularity arising in the radiation collapse. We specify here 
all the families of future directed non-spacelike geodesics which might possibly terminate 

at the singularity 0v , 0r  i.e., producing a naked singularity of the space-time. 

Throughout the present section, we choose   vm  to be a linear function,   vvm 2  

with 0  (Dwevedi and Joshi 1991). This is the Vaidya-Papapetrou space-time 

describing radiation collapse. Now we have three regions; 

  0vm  for  0v , 

  vvm   for  Tv 0 , and      (23) 

  0mvm   for  Tv  . 

Hence the mass for the final Schwarzschild black hole is 0m  and the causal structure of 

the space-time depends on the values chosen for the constants 0m , T and  . 

Let, 
dk

dx
K


    be tangent to non-spacelike geodesics, where k  is the affine parameter, 

then, 
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0; 

 KK  and BKKg 

      (24) 

 

Figure 2: Collapse of a radiation shell at the centre of symmetry. First wave front arrives at 

0r  at 0v  and the final wave front reaches the centre at Tv  . A singularity is 

visible at 0r . The flat Minkowski space-time for 0v  is joined to the Schwarzschild 

geometry for Tv  , through the Vaidya region. 

where 0B  for null vectors and 1B  for spacelike and timelike vectors respectively. 

Now integrating Lagrange’s equation we obtain the components 
K  and 

K  of the 
tangent vector as,  





22 sin

cos

r
K


 , 

2

cossin

r
K

 
 , 

where   is the impact parameter and   is the isotropy parameter given by; 

 cottansin  . 

Let us write   vvm 2  and defining a new parameter 
r

v
X 

 

 gives; 

  B
r

kkkX vrr 
2

2 21


  .      (25) 

Now we write the general solution as; 

 
r

rvP

dr

dv
K

,


,       (26) 

 
P

Br

rPr

PX
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K r

222
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





.     (27) 

Along radial curve we have 0 . The function P  satisfies the differential equation; 
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Dwevedi and Joshi (1989) solved (28) as; 
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Figure 3: The event horizon completely covers the singularity at 0r  when 
8

1
 .  

where C is constant and the affine parameter 0k  at 0r , 0v . From equation (26), 

(27) and (29) we get; 

   
  QAkX

QXXAk

dv

dr






1

11 2
 

     (30) 

where we have used CBA  , CL  ,    Xrr   and  

     
2

1

2

2

22
21 

















 XXX

Cr

A
LAkXQQ  . 

The point 0r , 0v  is a singular point of the above differential equation and is seen to 

be a naked singularity of the space-time (figure 3). 

Now, on a singular geodesic let,  

0
0,00,0

X
r

v
LimXLim

rvrv



, 

By equation (30) using L’ Hospital rule we get; 

 
 



ddr

ddv
Lim

r

v
LimX

rvrv 0,00,0
0


  

  
    00

2

0

00

 11

1

XQXX

XQX







      (31) 
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    0 2 00

2

0  XQXX .      (32) 

 

Figure 4: For 
8

1
 , a naked singularity forms at the origin. Families of trajectories such 

as 1  and 2  escape away to infinity from the singularity with a definite tangent. The 

non-spacelike curve 3 , which is emitted after the event horizon, crosses the apparent 

horizon and falls back to the singularity. Now, 

02 0

2

0  XX  





2

811
0


 aX ,      (33) 

  00 XQ    021 0

2

00

2  XXXL  .    (34) 

The values a  are only possible if 
8

1
  (figure 4). In this case the singularity is naked in 

the sense that families of future directed non-spacelike geodesics going to infinity 
terminate at the singularity in the past (Penrose diagram 5). 

 
Figure 5: A Penrose diagram for the naked singularity forming in the radiation collapse. 
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Now we consider positive sign solutions in equation (30), then; 

      
 XQXX

XQXXAkr

dx

dr






2

2

1

 11




.    (35) 

Integrating (35) we get the equation of geodesic curves in  rv,  planes to give  Xrr   

for 
8

1
 : 

 




































  dX

r
C

A
L

XX
Dr

Ak1QQ

 

4

4
exp

4

1

22

 for 
8

1
 ,  (36) 

   

     

































 













 dX

r
C

A
L

aX

aX
Dr

aa
a

aa
a

Ak1QQ

 

exp 

22

 for 
8

1
 ,   (37) 

where D  is a constant which labels different geodesics in the  rv,  plane. For example, 

0D  or D  implies constant
r

v
X  and gives rise to geodesic which are 

rectilinear (straight lines) in the  rv,  plane. 

For families of non-rectilinear geodesics i.e., for  ,0D , terminating at 0r , the 

allowed values of X  one obtained by simply letting  0r  in equation (37) and finding 

the values of X . It follows that either  aX , or  cX  , where c  is a double root of 

the equation (24). From equation (37) gives the equation of geodesic curves, that  0r  

implies either; 

 
0expor    








 

XQ

dX
aX , 

which means   0XQ  for some real values of cXX  . That means cX  is a root of 

equation (34), a third degree equation, so has three roots; however since 0,2 L , hence 

it has only two positive and one negative roots. If all the roots are distinct then,  

 



 

cXX

dX

XQ

dX
, 

and so, 0r  at cXX  . The double root exists if and only if; 
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  2
1

22
2222

61912

27








C
CL crt .    (38) 

For the radial case when 0 , 

02 2  XX  




 aX




2

811
,       (39) 

 





a

a

kCK v

2

2 , 

 









a
a

k
a

C
K r

2

2
,     (40) 


a

kCr
2

, 




a
kaCv

2

 ,      (41) 

where C  is a constant. For the non-radial rectilinear geodesic we get;  

0232 2  XX  

cX 







3

611
,        (42) 

12 


cr
K v




,       (43a) 

12 


ccr
K r




,        (43b) 

12

22




cc

k
r




, and        (43c) 

c
r

v
X  .        (43d) 

The rectilinear geodesics meet the initial point of the singularity 0v , 0r  provided 

a , and the tangents are real, which implies 
8

1
 . The three null lines  aX , 

 aX , and cX   in the  rv,  plane represent the three rectilinear singular geodesics 

that terminated at the singularity with either  aX  or cX  . Here a  is a single 

radial geodesic in the  rv,  plane meeting the singularity, which is not a tangent to any 

families of non-spacelike geodesics terminating at the naked singularity. So, we have three 

types of singularities at 0v , 0r  as; 

 aX ,  aX , and cX        (44)      
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where for 
8

1
 , caa   . Now we describe the behavior of singular geodesics in 

terms of the four different regions of the space-time. In region I characterized by 


1
X  

all geodesics are ingoing and no geodesics escape. Here 


1
X  is the apparent horizon. 

Within region II,  aX


1
, the region 

 



aX





2

411
 is free for all region 

where all geodesics with values of   escape from the singularity with  aX . However 

for  
 





2

411 
X  family of geodesics with 

 

 22

2

1

1

XX

X









  escape while 

others fall back to 0r . 

Region III,   aXa , is separated from region II by the rectilinear radial null geodesic 

 aX . All families of geodesics with crt   all over this region have their past end 

point at singularity with cXa  , while geodesics with crt   within this region 

have their past end point at singularity with tangent  cX  , which is the rectilinear non-

radial geodesic. In region IV, no non-spacelike geodesic has an end point at the singularity 
in the past. Now we consider the following scalar for the Vaidya space-time,  

 2
2





 K

r
KKR  ,       (45) 

where 
R is the Ricci curvature tensor. For non-spacelike geodesics the geodesic 

equations are given by; 

 

 224

22

2

1

XXr

QBCkC









  

 

 
    

    BCkXQXXr

BCkXQXCBrL

XXr

BCkC











12

33

2

14
224

222

224

22








.   (46)  

By (37), equation (46) gives; 

  
  
































224

2

0

2

0

22

0

2

0 2
1

XXr

k
LimXQBCkLimCkLimKKRkLim
kkkk 



  . 

Using L’ Hospital rule in equation (36) we get; 

  
   

2

0

2

00

2

0

00

2

00

2

2

0 2122

211




















 XXXLX

XXXXL
kLim

k 




 

  (47) 

where  0X , 02

0



kLim

k
, hence the strong curvature condition is satisfied 

along all singular geodesics. 
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From equation (26) and (27) we get; 

 
2

1

r

XQ

dk

dr
X

dk

dv

rdk

dX









  

 
 
XQ

dXXr
k

 
2

 .   (48) 

The non-rectilinear geodesics meet the singularity with either  aX  or 0r , cX  . 

For families of geodesics with  aX  at the singularity,  

nkaX   α , 81n , 
 

2
1 n

kr


  α ,    (49) 

 nk

D

k 


2

2

2

24 
 , 

where D  is a constant which is negative in region II and positive in region I.  

For the class  aX , for radial singular geodesics the behavior of   is given by;  

2

4

k


  , and  42

0



kLim

k
.      (50) 

For all other geodesics ( 0 ), we have again; 

 nk

D

k 


2

2

2

24 
 , 

and again  42

0



kLim

k
. 

For cX   the behavior of curvature scalar   for the rectilinear non radial trajectories 

are given by 
2

2

4k

c
  , and 

4

2
2

0

c
kLim

k


 


.  For non-radial trajectories in this class, is 

given by crt  , we have 
2

2

4k

c
  , which gives  

4

2
2

0

c
kLim

k


 


. 

Finally, for the rectilinear radial geodesic with  aX , we have 
2

4

k


   and 

 42

0



kLim

k
, which satisfy strong curvature condition. Now we examine the behavior 

of the Kretschmann scalar near the singularity forming in the Vaidya-Papapetrou models. 
The Kretschmann scalar is given by; 

 
6

22

6

2
1248

r

X

r

vm
RR


 

  ,    (51) 

along the families of the non-spacelike geodesics joining the singularity. Near the naked 

singularity for  aX ; 
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


a

kc

a
8

4

1

2212
 . 

Then, 02

0



kLim

k
 and 

4

1
0

12

0 c
Lim

kkk



 , which turns out that the divergence of   is 

  dependent. For cX   we get; 

 
22

42 1212

k

cc

crt





  

and 
 

22

42
2

0

1212

k

cc
kLim

crt
k 







   where 0

0
0


 kkk

Lim  and the divergence of   

turns out to be   independent. 

Finally for  aX , 



a

kc

a
8

4

1

2212
 , again implies divergence of   be   dependent and 

bounded by 
8

1
 . 

It is clear that naked singularity exhibits a directional behavior as far as the Kretschmann 
scalar is concerned along different families. 

By the above discussion we can remark that not just isolated trajectories but entire families 
of non-spacelike geodesics escape from the naked singularity at the origin outside the 

event horizon and inside the Cauchy horizon  aX . As a result, the naked singularity 

is visible to a far away observer for an infinite period of time once he or she has received 
the first ray from the singularity, and hence it is a strong curvature naked singularity in a 
very powerful sense. 

CONCLUDING REMARKS 

In this study we have briefly described general relativity, definitions of singularities and 
the gravitational collapse of a massive star. When a black hole is created due to an endless 
gravitational collapse of a massive star in the space-time, it covers the space-time 
singularity, which is called the cosmic censorship hypothesis. We have discussed the 
naked singularities by the Vaidya space-time metric with sufficient mathematical 
calculations. Throughout the paper we have avoided difficult mathematical calculations 
and have displayed diagrams where necessary.   
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