
Review Article ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)

 CC-BY-NC, Asian Business Consortium | AJTP Page 99

Django Web Development Framework: Powering

the Modern Web

Songtao Chen1, Shahed Ahmmed2, Karu Lal3*, Chunhua Deming4

1Jiujiang Vocational and Technical College, Jiujiang, Jiangxi, CHINA
2Lecturer, Department of Business Administration, Fareast International University, Dhaka, BANGLADESH
3Integration Engineer, Ohio National Financial Services, USA
4National University of Singapore, SINGAPORE

*E-mail for correspondence: karu.lal84@gmail.com
*E-mail for correspondence: danataschner@gmail.com
Received: Jun 12, 2017; Accepted: Jun 27, 2017; Published: Feb 20, 2017

ABSTRACT

Django is a web development framework that is both powerful and flexible, and it has become an
essential component in developing modern web applications. This open-source Python framework is
lauded for its pragmatic design, precise code, and extensive collection of built-in features that speed up
the software development process. Django's foundation is built on the "Don't Repeat Yourself" (DRY)
principle, which streamlines the development of complex web applications by reducing the required
duplication. Its Model-View-Controller (MVC) architectural pattern enables a clear separation of
concerns, simplifying both the process of creation and the maintenance of the system. Object-relational
mapping, or ORM for short, is a mechanism that Django uses to simplify and streamline database
interactions by doing away with the need to perform complicated SQL queries. This review attempt will
serve as a jumping-off point for our Django journey. This study will help to get started with Django by
offering an overview of the fundamental principles and processes to begin building web apps.

Keywords: Django, Python, Authentication, Scalability, Modern Web Applications, DRY, Security,
Reusable Components

INTRODUCTION

Django is a web application framework that stands out in
the constantly shifting world of online development as a
robust and dependable solution for creating modern web
applications. Django is an open-source web development
framework that has achieved a great deal of popularity due
to its capacity to simplify the development process, keep
the code clean and effective, and enable developers to
construct web applications that are dynamic, safe, and
scalable (Thaduri et al., 2016). Django is a framework built
on the Python programming language and abides by the
"Don't Repeat Yourself" (DRY) concept at its core. This
indicates that it encourages developers to avoid writing
redundant code and instead build code that is concise and
easy to maintain (Dekkati et al., 2019). It does this, which
results in a significant acceleration of the development
cycle and ease in the maintenance load. As a result, it is an
appropriate solution for projects of any size. Django's
architectural pattern is called Model-View-Controller

(MVC), ensuring that concerns are kept separate. This
separation improves the organization of the code as well as
the maintainability of the code, allowing developers to
concentrate on specific components of their web
applications (Deming et al., 2018). Because the framework's
object-relational mapping (ORM) mechanism encapsulates
database interactions, the requirement to write
complicated SQL queries is eliminated. This not only
makes the management of databases easier but also
encourages a more intuitive approach to data handling.

One of the most notable aspects of Django is the extensive
collection of tools and libraries that come pre-installed
with the framework. These tools cover many facets of web
development, such as user authentication, various security
measures, and an extensive library of reusable components
known as "apps" (Dekkati et al., 2016). Because these
resources are readily available, developers don't need to
keep spinning the wheel for each new project; instead, they
can focus on adding unique functionality to the

mailto:karu.lal84@gmail.com
mailto:danataschner@gmail.com

Chen et al.: Django Web Development Framework: Powering the Modern Web (99-106)

Page 100 American Journal of Trade and Policy ● Vol 7 ● Issue 3/2020

application. Scalability is another area in which Django
performs quite well. Because it provides a variety of
deployment options, it enables web applications to expand
without causing any disruptions to their functioning and the
flow of traffic. Django's scalability means that your
application may quickly broaden in scope, regardless of
whether you are developing a straightforward blog or a
sophisticated e-commerce platform. Django is still one of the
most popular frameworks for modern online development.
It is robust, dependable, and flexible, allowing developers to
tap into the web's full potential. This book will delve into the
intricacies of Django, studying its features, best practices,
and the numerous ways it continues to power the modern
web (Cao et al., 2013).

GETTING STARTED WITH DJANGO

Because of its effectiveness, scalability, and comprehensive
toolset, Django's open-source web development framework,
built on Python, has garnered significant popularity in
recent years. Additionally, Django provides an
authentication system, security features, and a vast library
of reusable components known as "apps," which enables
developers to concentrate on application-specific logic. In
addition, it offers several different deployment methods and
embraces best practices for scalability (Dekkati & Thaduri,
2017). Django has become the platform of choice for web
developers since it enables them to construct dynamic, safe,
and effective web applications that are suitable for the
requirements of the current web landscape.

Installation: Installing Django is the first thing you must
do to begin working with it. To install Django, you can use
pip, Python's package manager. Open your computer's
command prompt or terminal and type the following
command into it:

pip install django

This will begin downloading the most recent Django
version and installing it on our computer.

Creating a Django Project: The following command must
be entered to initiate the creation of a new project once
Django has been successfully installed:

django-admin startproject projectname

Change "project name" to reflect the name of your
undertaking. With this command, a directory that has all
of the required project files and structure will be created.

Understanding the Project Structure: A particular project
structure is adhered to by Django, and this structure
encompasses settings, URL routing, and a variety of
application components. The following is a list of the
primary files and directories with which you will interact:

 'settings.py': It stores the project's configurations.
These settings may include database configurations,
security settings, and other project-specific
parameters.

 'urls.py': Where the URL patterns for your application
are defined. These URL patterns govern how requests
are mapped to views.

 'views.py': Views are Python functions that handle
HTTP requests and return HTTP responses. 'views.py'
is located in the Views directory. This is the portion of
your web application where the logic will be written.

 'models.py': Models are what specify the structure of
the database that your application uses. The ORM that
comes with Django makes managing databases much
more accessible.

 `templates/`: The HTML templates that render web
pages are stored under this directory's 'templates/'
folder.

 'static/': Where static files such as CSS, JavaScript, and
picture files are kept.

Creating Your First App: A single project in Django may
encompass more than one app. The following command
must be executed to make an application:

python manage.py startapp appname

Change "appname" to reflect the name of your application.
An application is a self-contained component of your
project that encompasses a particular aspect of its
functionality.

Defining Models: Using Python classes, the data structures
for your application are defined within the models.py file.
These classes are then translated into database tables, which
simplifies the process of working with the data associated
with your application (Hillar, 2016).

Creating Views: You write Python functions in your app's
'views.py' file to handle HTTP requests, then save the file.
These functions provide HTTP replies and determine how
your web pages will be displayed on the user's browser.

URL Routing: You can set the URL patterns that will direct
requests to the relevant views in your app within the
'urls.py' file that is part of your project. Django uses this
information to determine which view to run in response to
a URL.

Running the Development Server: The following
command will allow you to begin the process of starting
up the development server:

python manage.py runserver

This will start a local server, and you may view your
Django project using a web browser by going to
http://127.0.0.1:8000/. This will launch the server.

After completing these preliminary activities, you will be
prepared to construct your web application using Django.
As you make progress, you will investigate increasingly
complex functionalities, such as deploying your
application to a production server, processing forms, and

Review Article ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)

 CC-BY-NC, Asian Business Consortium | AJTP Page 101

authenticating users, among other things (Chen et al.,
2019). As you continue to work with this robust web
development framework, you will find that the vast
documentation provided by Django and the active
community of developers it supports are invaluable tools
(Desamsetti & Lal, 2019).

OBJECT-RELATIONAL MAPPING

Our Python code and the actual database are separated by a
chasm that may be bridged thanks to the Object-Relational
Mapping (ORM) system included in the Django web
development framework. This robust ORM system is one of
the most critical components of the Django web
development framework. Using the Django Object
Relational Mapper (ORM), programmers may interact with
databases in a high-level, Pythonic manner. This makes the
maintenance of data models much simpler and more
streamlined. This post will investigate how the Django ORM
facilitates creating and manipulating data models by
providing developers with more control (Lopez et al., 2013).

 Abstraction of Database Operations: Django ORM is an
object-relational mapper that hides the complexity of
database operations. Instead of manually creating raw
SQL queries, developers can work with databases using
Python classes and functions. Because of this abstraction,
not only is the code easier to read and maintain, but it also
guarantees that the application will continue to be
database-agnostic. This allows you to move between
other database management systems quickly.

 Defining Data Models: Python classes are used to
determine the various data models utilized by Django.
These classes are representations of database tables,
and each attribute of the class corresponds to a column
in the table. You could construct a data model for blog
postings if you designed an application to manage
blogs. Here is an illustration of a straightforward
definition of a data model:

from django.db import models

class BlogPost(models.Model):

 title = models.CharField(max_length=200)

 content = models.TextField()

 created_at =
models.DateTimeField(auto_now_add=True)

This code defines the 'BlogPost' data model and includes
fields for the title, content, and creation date. Based on this
model, Django will automatically construct the relevant
database table.

 Migrations: We can change our data models utilizing
Django's migration mechanism, a vital ORM feature.
These changes may be made without having to edit the
database schema manually. When you make
modifications to your data models, such as adding a

new field or updating an existing one, you can create
and apply migrations to update the database schema
in a manner that is appropriate for the changes (Hosen
et al., 2019). This procedure is automated, and as a
result, it guarantees that your database schema will
always be in sync with the code.

 Querying the Database: The Django ORM offers a
high-level application programming interface (API) for
conducting database queries. Quickly retrieving,
filtering, and manipulating data can be accomplished
using methods and filters. For instance, if you want to
retrieve all blog articles that have been created after a
given date, you can use the query that is provided here:

recent_posts =
BlogPost.objects.filter(created_at__gte=some_date)

 This simplifies the SQL query to make it easier to read
and implement in Python.

 Integration with Views and Templates: The Django
ORM can integrate without hiccups with the views
and templates. You can send data from the database to
your views, which will render that data in the
appropriate templates. The process of displaying
database content on your web pages is made more
accessible due to this comprehensive integration.

 Security and Validation: SQL injection prevention
and data validation are two examples of the security
measures included in the Django ORM. These
capabilities ensure that all data transactions are both
safe and dependable.

VIEWS AND TEMPLATES

When it comes to web development, having a user
interface that has been carefully created is frequently the
most critical factor in developing a practical and exciting
web application. The widely used Django framework for
web development offers a dependable mechanism for
defining views and templates, crucial elements in creating
a website's user interface. In this article, we'll investigate
how views and templates in Django make it possible for
developers to design web applications that are both user-
friendly and aesthetically pleasing (Zambelli et al., 2013).

 Views-Handling Requests and Logic: Views are
Python methods in Django responsible for handling
HTTP requests and determining how the application
replies to such requests. The responsibilities of views
are the processing of user input, interaction with the
database, and rendering of template data. Views are
also responsible for generating dynamic HTML
content. They act as a connection point between the
user and the backend logic of the system.

Take, for instance, the situation where a user requests
a particular blog article to be written. This post would
be retrieved from the database by a view function,

Chen et al.: Django Web Development Framework: Powering the Modern Web (99-106)

Page 102 American Journal of Trade and Policy ● Vol 7 ● Issue 3/2020

which would also handle any additional logic (such as
user authentication) and create the proper template to
display the blog post to the user.

Django includes various pre-built views, such as
generic class-based views, that can make routine
activities more accessible. In addition, developers can
design their custom views to meet multiple
requirements.

 Templates - Structuring HTML: Developers can
determine the structure and style of web pages by
utilizing templates, which are an essential component
of the Django framework. In most cases, templates are
HTML files and contain blank spaces intended to be
filled in with dynamic content. The data from the views
are used to fill in these placeholders, which results in a
dynamic and personalized experience for the user.

For instance, while showing a list of blog posts, a
template can loop over the articles and insert each
post's title, content, and publication date in the
relevant positions within the HTML structure
(Thaduri, 2017). This can be done while the template
generates the blog post list.

It is possible to develop web pages that are dynamic
and responsive by using the template language that
Django provides. This language's rich logic
capabilities, which include conditionals and loops,
make this possible. Additionally, it allows template
inheritance, making it possible for developers to
produce an application with a consistent layout.

 Integrating Views and Templates: Building a user
interface in Django requires a fundamental
understanding of the interplay between views and
templates. Views are responsible for transferring data
to templates, which are then rendered to produce
HTML replies sent back to the user. This separation of
concerns makes it possible to have a clean and well-
organized codebase, making it more straightforward
for developers to work together and maintain the
program over time (Ravindran, 2015).

Django includes a function called render that may
render a template from within a view. This function
accepts the request object, a template name, and a
context dictionary that contains data that should be
supplied to the template. This is just one illustration:

from django.shortcuts import render

def blog_post(request, post_id):

 post = get_blog_post_by_id(post_id)

 return render(request, 'blog/post_detail.html',
{'post': post})

In this demonstration, the render function is applied to the
'blog/post_detail.html' template to render it with the
context data. This data includes the fetched blog post. The

HTML content will be constructed based on these data by
the template afterward.

 Enhancing User Experience: Developers can craft web
apps that operate faultlessly and provide users with a
fantastic experience if they combine views and
templates skillfully and thoughtfully. Utilizing
Django's views and templates enables developers to
design user interfaces that are captivating and
engaging for site visitors. Customization, interactivity,
and responsiveness are all within reach when using
Django's views and templates.

THE DJANGO ADMIN PANEL

The administration of content within a web application is
one of the most critical responsibilities, and the Django
web development framework provides an instrument that
is quite useful for accomplishing this goal: the Django
Admin Panel. This component is packed with features that
simplify content management by enabling developers and
administrators to interact with the application's data
effortlessly, streamlining the process of making updates
and carrying out administrative activities. This post will
investigate how the Django Admin Panel improves the
development workflow and makes content administration
more efficient (Schauble et al., 2017).

 Built-In Administration Interface: The Django
Admin Panel is an administration interface ready to
use out of the box and may be customized. It offers a
straightforward method for users to interact with the
data that the application stores. Developers can access
and manage database records with a bit of setup,
eliminating the need to write bespoke administrative
views or interfaces.

 Automatic CRUD Operations: The Admin Panel can
automate standard CRUD activities, which stands for
create, read, update, and delete. It shows the data in
tabular style, produces forms for creating and
changing entries, and makes it easy for administrators
to search, filter, and sort records. The amount of time
spent on development is cut down by this automation,
and maintenance is made more accessible.

 Customization: Even though it has a predefined user
interface, the Django Admin Panel is adjustable. The
developers can fine-tune the appearance and
functionality to meet the application's requirements.
Among the available customization possibilities are
the specification of which database models are
viewable, the creation of individualized views and
forms, and the use of CSS styles to personalize the
appearance and behavior.

 Security and Access Control: User authentication, role-
based access control, and permission management are
some of the sophisticated security features the Django
Admin Panel enforces. Administrators can control who

Review Article ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)

 CC-BY-NC, Asian Business Consortium | AJTP Page 103

can access the administrative interface and the actions
that those users can carry out. This guarantees that
sensitive data and essential operations will continue to be
safeguarded.

 Integration with Models: The Admin Panel integrates
without glitches or complications with the Django
models. The models used to represent application data
are defined by developers, and the Admin Panel is
responsible for automatically generating an interface for
managing those models. The management of content is
made more efficient as a result of this tight integration.

 Extensibility: The Admin Panel's functionality can be
expanded by developers by adding custom
administrative views, filters, and actions. Because of
its extensibility, the application can include
specialized administrative tools and workflows
explicitly designed to meet the requirements of its
specific use case.

 Multi-Language Support: The Django Admin Panel
supports multiple languages, making it suitable for
use with applications aimed at users worldwide.
Because it allows administrators to engage with
material in their preferred language, it is an inclusive
approach for managing applications that use
internationalized language pairs.

 Version Control and History: The Admin Panel is
responsible for keeping a record of the modifications
made to the records, providing a history of the
alterations, and offering the option to revert to earlier
versions. This tool is quite helpful when it comes to
auditing and being accountable.

 Reduced Learning Curve: The fact that the Django
Admin Panel has a relatively shallow learning curve is
one of its most significant selling points. It is optional
to provide users with substantial training to quickly
become skilled in content management if they already
have a fundamental understanding of database
records and online forms.

 Time and Cost Efficiency: Using the Django Admin
Panel, development teams can drastically reduce the
time and money often spent creating bespoke
interfaces for managing content. It is no longer
necessary for developers to spend time on mundane
administrative responsibilities thanks to this
technology, which frees them up to concentrate on the
fundamental capabilities of the program.

USER AUTHENTICATION AND AUTHORIZATION

The authentication and authorization of users are essential
components of the creation of online applications. Their
purpose is to guarantee that only the appropriate users can
access the proper resources while preserving data privacy
and security (Thaduri, 2018). Django, a well-known

framework for building websites, gives users access to a
reliable and adaptable system for managing these
functions.

User Authentication in Django: Django's authentication
system makes verifying the users' identities much easier.
The following are essential features:

 User Models: Django has a built-in user model that
may be modified or expanded to include extra user-
specific information. This model can also be used out
of the box without additional configuration.

 Registration and Login: The framework offers a
variety of user registration and login views and forms.
Developers can include these in their respective
applications.

 Password Management: Django manages passwords
safely and securely, including hashing, resetting, and
recovering forgotten passwords. It makes sure that
passwords are not saved in plaintext, which is an
improvement to the security of the system.

 Session Management: This feature ensures that user
sessions are managed in an open and accessible
manner, enabling user monitoring and consistent state
maintenance throughout the various application
pages.

 Authentication Backends: Django enables developers
to design custom authentication backends to support
various authentication methods. These methods
include LDAP and OAuth.

User Authorization in Django: The process of declaring
which actions or resources a user can access in Django is
known as authorization. This is determined by the user's
identification and their assigned roles. The following are
essential features:

 User Roles: This enables role-based permissions to be
assigned to users. Users can be put into groups with
very particular permissions, allowing for highly
granular control over who has access to what.

 Decorators: Using decorators, developers can restrict
access to views based on user roles or conditions. For
instance, the '@login_required' decorator guarantees
that a view is only accessible to successfully
authenticated users.

 Object-level Permissions: Django specifies rights on
an object-by-object basis using "object-level
permissions." This enables granular control over the
individuals authorized to perform particular
operations on particular items.

 Middleware: Middleware can be used to apply global
access control rules, ensuring that certain users are
diverted to different sections of the program or are
prevented from accessing particular parts of the
application.

Chen et al.: Django Web Development Framework: Powering the Modern Web (99-106)

Page 104 American Journal of Trade and Policy ● Vol 7 ● Issue 3/2020

Customization and Extensibility: It is possible to modify
and extend Django, which is one of the strengths of this
framework. Authentication and authorization logic
explicitly tailored to an application can be created by its
developers and implemented in that application. Because
of this versatility, it is possible to develop sophisticated
procedures for controlling access (Pippi, 2015).

FRONT-END INTEGRATION

In web development, integrating the front end, the user
interface, with the backend logic is one of the most critical
aspects. Django, a full-stack web framework, performs
exceptionally well because it offers various tools and
methods to smoothly connect front-end components with
backend functionality. The integration of the front end in
Django operates as follows:

 Templates: A templating engine is utilized by Django,
which maintains a partition between the HTML code
and the Python logic. Developers can create templates
that contain placeholders for dynamic data, and then
the data in these templates can be fetched from views
and inserted into the template. Because of this
separation, the code is easier to maintain, and front-
end developers can concentrate solely on the
presentation layer without worrying about the
workings of the backend code (Yen & Yen, 2015).

 Context Data: In Django, the view's context data is
transmitted to the template. This data, which may be
variables, lists, or objects, renders dynamic content
within the HTML template (Lal, 2016). This allows the
displaying of database records, form inputs, and any
other data required for the user interface.

 Static Files: A system for managing static files,
including pictures, CSS, and JavaScript, is provided by
Django. These files are kept in the static directory,
conveniently accessible to connect to any needed HTML
templates (Lal & Ballamudi, 2017). This ensures that the
front end of your website can include styles and scripts
that are effectively managed and served promptly.

 Template Inheritance: Django allows developers to
design a base template that specifies a complete
website's standard structure and layout. This strategy
helps maintain coherence throughout the design
process and reduces redundant coding (Lal et al., 2018).

 Front-End Frameworks: Integration with well-known
front-end frameworks and libraries such as React,
Vue.js, or Angular is possible with the Django web
framework. Developers can construct single-page
applications (SPAs) or interactive front-ends that use
REST APIs to interface with the Django backend.

 AJAX Integration: AJAX, which stands for
Asynchronous JavaScript and XML, is widely
supported by Django, allowing for dynamic and

asynchronous front-end interactions. It is possible to
make asynchronous queries to Django views using
JavaScript. These requests can return JSON or other
data for the front end to process without requiring a
complete website reload (Lal, 2019).

 Front-End Libraries: Django's modularity makes it
possible to integrate front-end libraries and
technologies developed by third parties, such as
jQuery, Bootstrap, or D3.js. Thanks to these libraries,
the user interface may be improved by adding pre-
built components and interactive elements.

 Front-End Testing: Django's testing framework
contains tools for testing the application's front end.
Developers can write tests to ensure the application's
user interface behaves as expected. This provides both
the application's quality and its dependability.

SCALING AND PERFORMANCE OPTIMIZATION

As online applications expand their user bases and
increase traffic, the need to scale those apps and optimize
their performance becomes more pressing. Django is a
robust framework that offers scalability and speed
optimization capabilities, making it an ideal choice for
addressing these difficulties. The following is a list of
essential strategies and techniques for scaling Django and
optimizing its performance:

 Caching: The mechanism of caching is a powerful tool
for improving performance. Caching is a feature
integrated into Django, allowing you to store data
accessed frequently in memory or disk. As a result,
there is less of a need to generate the same material
often or query the database, leading to faster response
times (Dauzon et al., 2016).

 Database Optimization: It is essential to perform
database queries as efficiently as possible. Django's
Object-Relational Mapping (ORM) component provides
capabilities for improving the performance of database
queries. The performance of a database can be
considerably enhanced by the application of strategies.

 Load Balancing: Through load balancing, incoming
traffic is distributed across numerous servers,
preventing one server from becoming a bottleneck.
Your application can be scaled horizontally to support
more users if you install a load balancer in front of the
Django instances it runs on.

 Caching Reverse Proxies: By caching and serving
static content, reverse proxies that caches, such as
Nginx or Varnish, can reduce the amount of work that
your Django application needs to do. The response
times for frequently requested content can be further
improved thanks to the caching capabilities of these
proxies, which can store responses from Django.

Review Article ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)

 CC-BY-NC, Asian Business Consortium | AJTP Page 105

 Asynchronous Processing: Asynchronous views and
tasks are supported by Django, which is an advantage
when it comes to managing time-consuming
procedures like the uploading of files or sending of
emails. Processing data in an asynchronous manner
releases server resources, which enables the
application to manage a more significant number of
requests at the same time (Thaduri, 2019).

 Content Delivery Networks (CDNs): CDNs store and
serve static assets such as photos, CSS, and JavaScript
from servers physically placed closer to the users. This
decreases the amount of delay and speeds up the
transmission of content. By integrating a content
delivery network (CDN) with Django, you can ensure
that your website pages will load more quickly.

 Profiling and Optimization: Performance bottlenecks
can be found using profiling tools like the Django
Debug Toolbar or Silk. You can identify sections of
your application that could be improved by
performing a profiling analysis, such as database
queries or views that are too slow.

 Gunicorn and uWSGI: The application servers
Gunicorn and uWSGI are trendy choices for deploying
Django in production since they can manage a high
volume of requests all at once effectively. These
servers are typically utilized with a web server such as
Nginx in a business setting (Lal, 2015).

 Content Compression: When content compression is
enabled, such as with Gzip or Brotli, the data sent
between the server and the client takes up less space.
Payload sizes that are less significant lead to quicker
load times for websites.

 Horizontal Scaling: Your Django application can have its
capacity horizontally scaled to manage increased loads if
you add extra servers or containers. Managing and
deploying numerous instances of your application is
much simpler because of technological advancements
such as Docker and Kubernetes (George, 2016).

CONCLUSION

The Django web development framework is a vital
cornerstone supporting the current-day internet. Because of
its pragmatic design, precise code, and an abundance of
built-in functionality, it has become the platform of choice
for developers who are working to create web applications
that are dynamic, safe, and efficient. Django substantially
simplifies the process of both development and
maintenance by adhering to the "Don't Repeat Yourself"
(DRY) principle and implementing the Model-View-
Controller (MVC) architectural pattern. This helps to reduce
instances of repetition and improve the organization of the
code. The Django Object-Relational Mapping (ORM)
framework streamlines database interactions by eliminating
the requirement for executing intricate SQL queries and

fostering a more intuitive data management approach. It
provides several sophisticated security features, including
an authentication system and best practices for scalability,
allowing web applications to expand without disruptions to
keep up with changing requirements. Django's extensive
library of reusable components, collectively called "apps,"
makes development more efficient by supplying ready-
made solutions for typical web application functionalities.
In addition, the framework offers various deployment
choices, allowing it to be utilized in a wide range of hosting
situations. Because of its adaptability and power, Django has
emerged as a critical component in developing cutting-edge,
feature-packed, and time-saving online applications in an
era where web applications are indispensable for various
business sectors and uses. Django has demonstrated time
and again that it is more than capable of powering the ever-
evolving environment of the internet, regardless of the size
of the project or the complexity of the system being powered
by it. Its rich history bodes well for its prospects in web
development, which remain just as promising as those
prospects.

REFERENCES

Cao, K., Wang, F., Liu, J. G.  (2013). Study and Implementation
of PM2.5 Data Download Service Based on Python.
Applied Mechanics and Materials, 411-414.
https://doi.org/10.4028/www.scientific.net/AMM.4
11-414.555

Chen, S., Thaduri, U. R., & Ballamudi, V. K. R. (2019). Front-
End Development in React: An Overview. Engineering
International, 7(2), 117–126.
https://doi.org/10.18034/ei.v7i2.662

Dauzon, S., Ravindran, A., Bendoraitis, A. (2016). Django: Web
Development With Python. Packt Publishing, Limited.
Birmingham, GB.

Dekkati, S., & Thaduri, U. R. (2017). Innovative Method for the
Prediction of Software Defects Based on Class
Imbalance Datasets. Technology & Management
Review, 2, 1–5.
https://upright.pub/index.php/tmr/article/view/78

Dekkati, S., Lal, K., & Desamsetti, H. (2019). React Native for
Android: Cross-Platform Mobile Application
Development. Global Disclosure of Economics and
Business, 8(2), 153-
164. https://doi.org/10.18034/gdeb.v8i2.696

Dekkati, S., Thaduri, U. R., & Lal, K. (2016). Business Value of
Digitization: Curse or Blessing?. Global Disclosure of
Economics and Business, 5(2), 133-
138. https://doi.org/10.18034/gdeb.v5i2.702

Deming, C., Dekkati, S., & Desamsetti, H. (2018). Exploratory
Data Analysis and Visualization for Business
Analytics. Asian Journal of Applied Science and
Engineering, 7(1), 93–100.
https://doi.org/10.18034/ajase.v7i1.53

https://doi.org/10.4028/www.scientific.net/AMM.411-414.555
https://doi.org/10.4028/www.scientific.net/AMM.411-414.555
https://doi.org/10.18034/ei.v7i2.662
https://upright.pub/index.php/tmr/article/view/78
https://doi.org/10.18034/gdeb.v8i2.696
https://doi.org/10.18034/gdeb.v5i2.702
https://doi.org/10.18034/ajase.v7i1.53

Chen et al.: Django Web Development Framework: Powering the Modern Web (99-106)

Page 106 American Journal of Trade and Policy ● Vol 7 ● Issue 3/2020

Desamsetti, H., & Lal, K. (2019). Being a Realistic Master:
Creating Props and Environments Design for AAA
Games. Asian Journal of Humanity, Art and
Literature, 6(2), 193-
202. https://doi.org/10.18034/ajhal.v6i2.701

George, N. (2016). Mastering Django: Core. Packt Publishing,
Limited.

Hillar, G. C. (2016). Building RESTful Python Web Services:
Create Web Services That Are Lightweight, Maintainable,
Scalable, and Secure Using the Best Tools and Techniques
Designed for Python. Packt Publishing, Limited.
Birmingham, GB.

Hosen, M. S., Ahmmed, S., & Dekkati, S. (2019). Mastering 3D
Modeling in Blender: From Novice to Pro. ABC
Research Alert, 7(3), 169–180.
https://doi.org/10.18034/ra.v7i3.654

Lal, K. (2015). How Does Cloud Infrastructure Work?. Asia
Pacific Journal of Energy and Environment, 2(2), 61-
64. https://doi.org/10.18034/apjee.v2i2.697

Lal, K. (2016). Impact of Multi-Cloud Infrastructure on
Business Organizations to Use Cloud Platforms to
Fulfill Their Cloud Needs. American Journal of Trade and
Policy, 3(3), 121–126.
https://doi.org/10.18034/ajtp.v3i3.663

Lal, K. (2019). How Multiplayer Mobile Games have Grown
and Changed Over Time?. Asian Journal of Applied
Science and Engineering, 8(1), 61–72.
https://doi.org/10.18034/ajase.v8i1.56

Lal, K., & Ballamudi, V. K. R. (2017). Unlock Data’s Full
Potential with Segment: A Cloud Data Integration
Approach. Technology & Management Review, 2(1), 6–12.
https://upright.pub/index.php/tmr/article/view/80

Lal, K., Ballamudi, V. K. R., & Thaduri, U. R. (2018). Exploiting
the Potential of Artificial Intelligence in Decision
Support Systems. ABC Journal of Advanced
Research, 7(2), 131-
138. https://doi.org/10.18034/abcjar.v7i2.695

Lopez, C. F., Muhlich, J. L., Bachman, J. A., Sorger, P. K. 
(2013). Programming Biological Models in Python
Using PySB. Molecular Systems Biology,
9, 646. https://doi.org/10.1038/msb.2013.1

Pippi, M. (2015). Python for Google App Engine: Master the Full
Range of Development Features Provided by Google App

Engine to Build and Run Scalable Web Applications in
Python. Packt Publishing, Limited. Birmingham, GB.

Ravindran, A. (2015). Django Design Patterns and Best Practices:
Easily Build Maintainable Websites with Powerful and
Relevant Django Design Patterns. Packt Publishing,
Limited. Birmingham, GB

Schauble, S., Anne-Kristin, S., Bockwoldt, M., Pal, P., Heiland,
I. (2017). SBMLmod: a Python-Based Web Application
and Web Service for Efficient Data Integration and
Model Simulation. BMC Bioinformatics, 18.
https://doi.org/10.1186/s12859-017-1722-9

Thaduri, U. R. (2017). Business Security Threat Overview
Using IT and Business Intelligence. Global Disclosure of
Economics and Business, 6(2), 123-
132. https://doi.org/10.18034/gdeb.v6i2.703

Thaduri, U. R. (2018). Business Insights of Artificial
Intelligence and the Future of Humans. American
Journal of Trade and Policy, 5(3), 143–150.
https://doi.org/10.18034/ajtp.v5i3.669

Thaduri, U. R. (2019). Android & iOS Health Apps for Track
Physical Activity and Healthcare. Malaysian Journal of
Medical and Biological Research, 6(2), 151-
156. https://mjmbr.my/index.php/mjmbr/article/vi
ew/678

Thaduri, U. R., Ballamudi, V. K. R., Dekkati, S., &
Mandapuram, M. (2016). Making the Cloud Adoption
Decisions: Gaining Advantages from Taking an
Integrated Approach. International Journal of Reciprocal
Symmetry and Theoretical Physics, 3, 11–16.
https://upright.pub/index.php/ijrstp/article/view/77

Yen, C. M., Yen, J.  (2015). Cloud-Based Mechanical Design
Oriented Python Program Development System.
Applied Mechanics and Materials, 764-765, 848-852.
https://doi.org/10.4028/www.scientific.net/AMM.7
64-765.848

Zambelli, P., Gebbert, S., Ciolli, M. (2013).  Pygrass: An Object
Oriented Python Application Programming Interface
(API) for Geographic Resources Analysis Support
System (GRASS) Geographic Information System
(GIS). ISPRS International Journal of Geo-Information,
2(1), 201-219. https://doi.org/10.3390/ijgi2010201

--0--

Archive Link:

https://abc.us.org/ojs/index.php/ajtp/issue/archive

https://doi.org/10.18034/ajhal.v6i2.701
https://doi.org/10.18034/ra.v7i3.654
https://doi.org/10.18034/apjee.v2i2.697
https://doi.org/10.18034/ajtp.v3i3.663
https://doi.org/10.18034/ajase.v8i1.56
https://upright.pub/index.php/tmr/article/view/80
https://doi.org/10.18034/abcjar.v7i2.695
https://doi.org/10.1038/msb.2013.1
https://doi.org/10.1186/s12859-017-1722-9
https://doi.org/10.18034/gdeb.v6i2.703
https://doi.org/10.18034/ajtp.v5i3.669
https://mjmbr.my/index.php/mjmbr/article/view/678
https://mjmbr.my/index.php/mjmbr/article/view/678
https://upright.pub/index.php/ijrstp/article/view/77
https://doi.org/10.4028/www.scientific.net/AMM.764-765.848
https://doi.org/10.4028/www.scientific.net/AMM.764-765.848
https://doi.org/10.3390/ijgi2010201
https://abc.us.org/ojs/index.php/ajtp/issue/archive

