
Research Article ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)

 CC-BY-NC 2014, Asian Business Consortium | AJTP Page 107

Information Acquisition Driven by Reinforcement

in Non-Deterministic Environments

Naresh Babu Bynagari1*, Ruhul Amin2

1Director of Sales, Career Soft Solutions Inc, 145 Talmadge rd Edison NJ 08817, Middlesex, USA
2Senior Data Entry Control Operator (IT), ED-Maintenance Office, Bangladesh Bank (Head Office), Dhaka, BANGLADESH

*E-mail for correspondence: naresh@careersoftusa.com

Received: Jun 12, 2017; Accepted: Jun 27, 2017; Published: Feb 20, 2017

Source of Support: None No Conflict of Interest: Declared

ABSTRACT

What is the fastest way for an agent living in a non-deterministic Markov environment (NME) to learn
about its statistical properties? The answer is to create "optimal" experiment sequences by carrying out
action sequences that maximize expected knowledge gain. This idea is put into practice by integrating
information theory and reinforcement learning techniques. Experiments demonstrate that the resulting
method, reinforcement-driven information acquisition (RDIA), is substantially faster than standard
random exploration for exploring particular NMEs. Exploration was studied apart from exploitation
and we evaluated the performance of different reinforcement driven information acquisition variations
to that of traditional random exploration.

Keywords: Non-deterministic Markov environment (NME), Reinforcement driven information
acquisition (RDIA), Modeling agent-environment interaction, Q-learning

INTRODUCTION

Learning must be accounted for in computational theories
of agent-environment interaction. To generate and retain
intelligent agents, it is vital to learn. Robust real-world
robots cannot be created just through precise
programming. The real world is far too complex,
idiosyncratic, and uncertain to know ahead of time, and
computer languages are far too rigid and inflexible to make
it possible to program alone. At least some of the burden
of skill acquisition must be carried by intelligent agents.
Furthermore, because the world does not stand still, agents
must learn new abilities and adapt old ones to changes in
the environment in order to maintain a high level of
performance (Bynagari, 2018).

Though there are many different types of learning and
many different things that an agent might learn, all
learning ultimately boils down to learning control.
Anything learned is only valuable in terms of its impact on
the agent's interaction with its environment, or in terms of
the agent's ability to manipulate the environment to
achieve the desired result (Ganapathy, 2017).

It's necessary to model the environment for efficient
reinforcement learning. What is the most cost-effective
way to obtain a model of a non-deterministic Markov

environment (NME)? The method described in this paper,
known as Reinforcement Driven Information Acquisition
(RDIA), builds on previous work on "query learning" and
"experimental design" (Fedorov, 1972) for an overview,
and (Baum, 1991; MacKay, 1992; Hwang et al., 1991;
Plutowski et al., 1994; Cohn, 1994) for more recent
contributions) as well as "active exploration"
(Schmidhuber, 1991a; Schmidhuber, 1991b; Storck, 1994;
Paruchuri, 2015). Information gain and reinforcement
learning are combined in this strategy. The latter is utilized
to create exploratory tactics that make use of the former.
Experiments show that reinforcement-driven information
acquisition has a number of significant benefits.

Objectives of this Study

This study is aimed to model the environment for efficient
reinforcement learning using Reinforcement Driven
Information Acquisition (RDIA).

LITERATURE REVIEW

The fundamental concepts of reinforcement learning are
discussed in this section. To begin, we'll go through a basic
model of agent-environment interaction. The principles of
Markov decision processes are then discussed, as well as
Q-learning (Watkins, 1989; Vadlamudi, 2018), a prominent

mailto:naresh@careersoftusa.com

Bynagari and Amin: Information Acquisition Driven by Reinforcement in Non-Deterministic Environments (107-112)

Page 108 American Journal of Trade and Policy ● Vol 6 ● Issue 3/2019

reinforcement learning technique. However, a
comprehensive examination of Markov decision processes
and reinforcement learning is beyond the scope of this
article (Bynagari, 2016; Bynagari & Fadziso, 2018; Neogy &
Bynagari, 2018). Throughout the article, we'll concentrate
on Q-learning and the challenges it faces as a result of non-
Markov decision processes. Other algorithms (Barto et al.,
1983; Holland, 1986; Sutton, 1990; Williams, 1986) have met
with the same fate. The reader may wish to study
(Bertsekas, 1987) and (Watkins, 1989), for a more thorough
examination of Markov decision processes and Q-learning
as well as for a broad overview of reinforcement learning
(Whitehead and Ballard, 1991; Ganapathy, 2016).

MODELING AGENT-ENVIRONMENT INTERACTION

The paradigm of agent-environment interaction shown in
Figure 1 is frequently utilized in reinforcement learning.
Two synchronized finite state automatons interact in a
discrete-time cyclical process to represent the agent and
the environment in this paradigm.

Figure 1: A simple model of agent environment interaction

The following sequence of events occurs at each time point.

 The agent detects the environment's status.

 The agent picks an action to take based on the present
condition.

 The environment transitions to a new state and
creates a payout based on the present state and the
action chosen by the agent.

 The commission is returned to the agent.

THE ENVIRONMENT

A Markov decision process is used to model the
environment. A Markov decision process is defined by the
tuple (S, A, T, R), where S represents the set of potential
states, A represents the set of possible actions, T represents
the state transition function, and R represents the reward
function. At each one time, the environment is in one of S's
states and accepts one of A's actions. Typically, S and A are
believed to be discrete and finite. The transition function,
T, models state transitions by mapping state-action
pairings into new states (T: S x A -+ S). In general, the
transition function is probabilistic, and it is usually
expressed in terms of a collection of transition
probabilities, 𝑝𝑥,𝑦 (𝑎)?

𝑃𝑥,𝑦 (𝑎) = 𝑃𝑟𝑜𝑏 𝑇(𝑥, 𝑎) = 𝑦)

The reward function R, which transforms state-action pairs
into scalar-valued rewards (𝑅: 𝑆 𝑥 𝐴 → ℝ), determines the

payoffs provided by the environment. It's also possible that
the reward function is probabilistic.

The effects of actions (i.e., the next state and the immediate
reward generated) in a Markov decision process (MDP) are
solely dependent on the present state. This type of process
model is stated to be memoryless and satisfy the Markov
property. The Markov feature is crucial to this
environment model because it indicates that knowing the
current state is always sufficient for optimum control (i.e.,
maximizing the reward received overtime) (Bertsekas,
1987; Vadlamudi, 2017).

As a result, while it may be conceivable to create action-
selection strategies that rely on additional information (a
history trace), these strategies will never be able to surpass
the best decision strategies that rely just on current state
knowledge. The agent is in charge of coming up with
control actions. It detects the current state, chooses an
action, observes the new state, and rewards the result at
each time step (Vadlamudi, 2016). As a form of learning
feedback, rewards are used. A control policy, which
prescribes an action to take for each state, is one approach
to specify an agent's behavior. In formal terms, a policy 𝑓
is a function from states to actions (𝑓: 𝑆 → 𝐴), with 𝑓(𝑥)
denoting the action to be taken in state 𝑥.

The goal of reinforcement learning is for the agent to
develop a control policy that maximizes some measure of
total reward over time (Bynagari, 2015). Any number of
reward measures can be employed in theory, but the most
common is one based on a discounted total of the benefit
received over time (Bynagari, 2017). This amount is known
as the return, and it is defined as follows for time t:

𝑟𝑒𝑡𝑢𝑟𝑛 (𝑡) = ∑ 𝛾𝑛𝑟𝑡+𝑛

∞

𝑛=0

where y, also known as the temporal discount factor, is a
constant that ranges from 0 to 1, and 𝑟𝑡+𝑛 is the reward
received at time t + n. The agent's goal is to find a strategy
that maximizes the expected return because the process
may be stochastic for time t, defined as 𝑉𝑓(𝑥) the value

function for policy 𝑓, as the expected return for a fixed
policy 𝑓, given that the process starts in state 𝑥 and then
follows policy 𝑓. The agent's goal is to find 𝑓∗, a policy that
is uniformly excellent for all feasible states. To put it
another way, find 𝑓∗ in such a way that-

𝑉𝑓∗ (𝑥) = max
𝑓

𝑉𝑓 (𝑥) ⋁𝑥 ∈ 𝑆

The fact that 𝑓∗ is properly specified and guaranteed to
exist is an important property of MDPs. The Optima&
Theorem from dynamic programming [9], in particular,
assures that for a discrete temporal, discrete-state Markov
decision process, an optimal deterministic policy exists at
all times. A policy 𝑓 is also optimal if and only if it fulfills
the following relationship:

𝑄𝑓 (𝑥, 𝑓(𝑥)) = max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑎)) ⋁𝑥 ∈ 𝑆

Research Article ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)

 CC-BY-NC 2014, Asian Business Consortium | AJTP Page 109

The action-value function 𝑄𝑓 (𝑥, 𝑎) is defined as the

expected return if the agent starts in state x, performs
action a once, and then follows policy 𝑓 [9, l0].

𝑓∗ (𝑥) = 𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑄𝑓∗ (𝑥, 𝑎) = max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑏)) ⋁𝑥 ∈

𝑆 states that a policy is optimal if and only if it prescribes
an action that maximizes the local "action-value" in each
state. That is to say,

𝑓∗ (𝑥) = 𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑄𝑓∗ (𝑥, 𝑎) = max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑏)) ⋁𝑥 ∈ 𝑆

And

𝑉𝑓∗ (𝑥) = max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑎)) ⋁𝑥 ∈ 𝑆

The set of action-values for which 𝑓∗ (𝑥) =

𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑄𝑓∗ (𝑥, 𝑎) = max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑏)) ⋁𝑥 ∈ 𝑆 holds for a

particular MDP is unique. The ideal action-value function
Q* for the MDP is said to be defined by these values. The
best policy can be determined directly using dynamic
programming techniques (Bellman, 1957, Bertsekas, 1987;
Ross, 1983; Ganapathy, 2018) if an MDP is thoroughly
known (including the transition probabilities and reward
distributions). However, in many circumstances, the
environment's structure and dynamics remain unknown.
In these conditions, the agent cannot immediately compute
the best policy; instead, it must investigate its
surroundings and learn an effective control policy through
trial and error (see Table 1).

Table 1: A simple version of the one-step Q-learning
algorithm

𝑄 ← a set of initial values for the action-value function
(e.g uniformly zero)
Repeat forever;

1. 𝑥 ← the current state
2. Select an action a to execute that is usually

consistent with 𝑓(𝑥) but occasionally an
alternate.

3. Execute action a, and let y be the next state and
r be the reward received.

4. Update 𝑄(𝑥, 𝑎):
𝑄 (𝑥, 𝑎) ← (1 − 𝛼)𝑄(𝑥, 𝑎) + 𝛼[𝑟 + 𝛾𝑈(𝑦)]

Where 𝑈(𝑦) = 𝑄(𝑦, 𝑓(𝑦))

Here for each 𝑥 ∈ 𝑆: 𝑓(𝑥) ← a such that
𝑄(𝑥, 𝑎) = 𝑚𝑎𝑥𝑏 ∈𝐴𝑄(𝑥, 𝑏)

Q-LEARNING / BASIC SETUP

An NME is home to an agent. The environment is in state S(t)
(one of n possible states S1; S2;…Sn) at a discrete-time step t,
and the agent acts a(t) (one of m possible actions a1; a2;…am).
This has an impact on the environment: If S(t) = Si and a(t) =
aj, then S(t + 1) = Sk with probability 𝑝𝑖𝑗𝑘 𝑆(𝑡 + 1) = 𝑆𝑘. There

is reinforcement R(t) at particular moments t.

The goal is to maximize the discounted total of future
reinforcement ∑ 𝛾𝑘𝑅(𝑡 + 𝑘 + 1) (𝑤ℎ𝑒𝑟𝑒 0 < 𝛾 < 1) 𝑚

𝑘=0 at
time t (where 0 1). For this, we employ Watkins' Q-learning

(Watkins, 1989): The agent's evaluation Q(S; a) (which
starts at zero) for the state/action pair is (S; a). The
algorithm's primary loop is as follows:

1. Take note of the current situation S(t). Pick p ϵ [0; 1] at
random. If p ≤ µ ϵ [0; 1], choose a number at random (t).
Otherwise, choose a (t) so that Q (S (t); a (t)) is the largest.
2. Run a (t), paying attention to S(t + 1) and R(t).

3. 𝑄(𝑆(𝑡), 𝑎(𝑡)) ← (1 − 𝛽)𝑄(𝑆(𝑡), 𝑎(𝑡)) + 𝛽(𝑅(𝑡) +

 𝛾 𝑚𝑎𝑥𝑏𝑄(𝑆(𝑡 + 1) 𝑤ℎ𝑒𝑟𝑒 0 < 𝛾 < 1, 0 < 𝛽 < 1 1st step

METHODS

Model Building with reinforcement driven information

acquisition

The goal of our agent is to create a model of the pijk
transition probabilities. RDIA is a type of unsupervised
reinforcement learning that is investigated separately from
goal-directed reinforcement learning tasks "It builds on
prior research on active exploration" (Schmidhuber, 1991b;
Schmidhuber, 1991a; Thrun and Moller, 1992).

Previous approaches were limited to

 deterministic settings (they did not address the
overall problem of learning a model of a
nondeterministic NME's statistical features), and

 Were built on ad-hoc elements rather than relying on
notions from information theory.

Collecting Machine Learning estimates

The agent has a counter cij for each state/action
combination (or experiment) (Si; aj), whose value at time 𝑡,
cij (t), matches the number of the agent's past experiences
with that state/action pair (or experiment) (Si; aj). In
addition, there are n counters cijk for each state/action pair
(Si; aj), 𝑘 = 1 … 𝑛. The number of past encounters the agent
had with (Si; aj), where the following state was Sk, is equal
to the value of cijk at time𝑡, cijk(t). It's worth noting that cij (t)
= ∑ 𝑐𝑖𝑗𝑘 (𝑡)𝑘 . If cij (t) > 0 at time 𝑡, then

𝑝𝑖𝑗𝑘
∗ (𝑡) =

𝑐𝑖𝑗𝑘 (𝑡)

𝑐𝑖𝑗(𝑡)

To some degree arbitrarily, 𝑝𝑖𝑗𝑘
∗ (𝑡) = 0, if cij (t) = 0. As a

result, the 𝑝𝑖𝑗𝑘
∗ (𝑡) do not satisfy the conditions of a

probability distribution before the agent has undertaken
any trials of the kind (Si; aj). For cij (t) > 0, the
𝑝𝑖𝑗𝑘

∗ (𝑡) construct a maximum likelihood model of the

probabilities of the alternative next states (compatible with
the agent's previous experiences).

Measuring information gain

If the agent conducts an experiment by performing action
a (t) = aj in state S(t) = Si, and the new state is S(t + 1) = Sk,
then 𝑝𝑖𝑗𝑘

∗ (𝑡) will, in general, differ from 𝑝𝑖𝑗𝑘
∗ (𝑡 + 1). The

agent has gained a piece of information by watching the
outcome of the experiment, which will improve the
accuracy of the estimators. We'll go through three different
ways to measure the agent's success in the next section

Bynagari and Amin: Information Acquisition Driven by Reinforcement in Non-Deterministic Environments (107-112)

Page 110 American Journal of Trade and Policy ● Vol 6 ● Issue 3/2019

(Neogy & Paruchuri, 2014; Vadlamudi, 2015). The agent's
progress will be used to strengthen it in all three scenarios.

i. According to standard statistics, the approximate
confidence area of a multinomial distribution

satisfies 𝑃 (𝐸2(𝑃𝑖𝑗𝑘,
∗ 𝑃𝑖𝑗𝑘) <

𝑥𝑛−1,𝛼
2

𝑐𝑖𝑘
) = 1 − 𝛼 , where 𝛼

is a particular confidence level (Behnen and Neuhaus,

1984, p. 301), and 𝐸2(𝑃𝑖𝑗𝑘
∗ , 𝑝𝑖𝑗𝑘) = ∑

(𝑃𝑖𝑗𝑘
∗ ,𝑝𝑖𝑗𝑘)2

𝑃𝑖𝑗𝑘

𝑛
𝑘=1

The weighted squared error of the 𝑃𝑖𝑗𝑘
∗ estimators is 𝑝𝑖𝑗𝑘

(Pearson's 2-distance for multinomial distributions is a classic
technique of quantifying estimators' departures from real
probabilities, (Behnen and Neuhaus, 1984p. 233, 301). The
upper bound for 𝐸2 with confidence level 𝑋𝑛∗1,𝛼

2 , (the -
quantile of the 𝑋𝑛∗1

2 -distribution, which is independent of 𝑐𝑖𝑗!)

divided by 𝑐𝑖𝑗.
1

𝑐𝑖𝑗
 is proportional to this upper bound. Reduce

the dispersion of the estimators by lowering 𝐸2 upper bound,
which is a major goal of optimum experiment design (Cohn,
1994; Fedorov, 1972). As a result, state/action combinations
with small counters 𝑐𝑖𝑗 are preferred when choosing a new

experiment. In partially deterministic contexts, however,
fewer "deterministic" tests might be preferable to non-
deterministic ones.

𝐷(𝑡) = ∑|𝑃𝑖𝑗𝑘
∗ (𝑡 + 1) − 𝑃𝑖𝑗𝑘

∗ (𝑡)|

𝑘

The information gain (the agent's current
progress) for 𝑐𝑖𝑗 (𝑡) > 0 and D(t) = 0 for 𝑐𝑖𝑗 (𝑡) = 0

are used to account for this new factor. Note that
for big 𝑐𝑖𝑗, 𝑃𝑖𝑗𝑘

∗ (𝑡 + 1) − 𝑃𝑖𝑗𝑘
∗ (𝑡) is proportional to

1

𝑐𝑖𝑗
, but for deterministic state/action pairs, these

differences are zero (unlike
1

𝑐𝑖𝑗
 itself).

ii. We may quantify the agent's progress by measuring
the entropy difference between the probability
distributions given by the 𝑃𝑖𝑗𝑘

∗ (𝑡 + 1) values and the

𝑃𝑖𝑗𝑘
∗ (𝑡) values, because the estimators reflect

probability distributions over the next states Sk. It is
possible to rephrase:

𝐷(𝑡) = |∑ 𝑃𝑖𝑗𝑘
∗ (𝑡 + 1) 𝐼𝑛𝑃𝑖𝑗𝑘

∗ (𝑡 + 1) − ∑ 𝑃𝑖𝑗𝑘
∗ (𝑡 + 1) − 𝑃𝑖𝑗𝑘

∗ (𝑡)

𝑘

|

𝑘

if 𝑐𝑖𝑗 is greater than 0. (For 𝑃𝑖𝑗𝑘
∗ = 0, we use the formula

𝑃𝑖𝑗𝑘
∗ 𝐼𝑛𝑃𝑖𝑗𝑘

∗ = 0). The entropy of the related MLM is assumed to

be zero if 𝑐𝑖𝑗(𝑡) = 0 (before the agent has undertaken any

experiments of type (𝑆𝑖 , 𝑎𝑗). D(t) will also be 0 in this scenario.

D(t) can be proven to be proportional to
1

𝑐𝑖𝑗
 for large 𝑐𝑖𝑗 once

again (and zero in the deterministic case). High entropy
probability distributions result in high D(t), which is exactly
what we want: high entropy distributions should be
investigated more than low entropy distributions (bias
towards "nondeterministic" state/action combinations).

iii. The Kullback Leibler distance is a related method for
determining probability distribution changes.

𝐷(𝑡) = ∑ 𝑑𝑘(𝑡),
𝑘

Where

𝑑𝑘(𝑡) = 0 𝑖𝑓 𝑃𝑖𝑗𝑘
∗ (𝑡 + 1) = 0 or 𝑃𝑖𝑗𝑘

∗ (𝑡) = 0 , and 𝑑𝑘(𝑡) =

 𝑃𝑖𝑗𝑘
∗ (𝑡 + 1)𝐼𝑛

(𝑃𝑖𝑗𝑘
∗ (𝑡+1)

𝑃𝑖𝑗𝑘
∗ (𝑡)

This metric has qualities similar to the entropy difference
described above, but it is more sensitive to increases in the
greatest 𝑃𝑖𝑗𝑘

∗ values (emphasis on changes of probability

distributions tending towards determinism). The hint is
that the agent's progress D(t) is always used as the
reinforcement R(t) for the Q-Learning algorithm from the
beginning. Because an experiment at time t changes only n
estimates (the 𝑛𝑃𝑖𝑗𝑘

∗ (𝑡 + 1)) associated with aj = a(t) and Si

= S(t)), and because D(t) can always be computed in O(n)
operations, the algorithm's total complexity per time step
is constrained by O(n) operations (n). The particular
definition of D(t) should not make a significant impact
because all three D(t) versions promote nondeterminism

and are proportional to
1

𝑐𝑖𝑗
 for big 𝑐𝑖𝑗.

RESULTS AND DISCUSSION

Simulations of reinforcement driven information

acquisition

We evaluated the performance of different reinforcement-
driven information acquisition variations to that of
traditional random exploration (variants of random
exploration are the approaches used by the majority of
authors). This is a small space. The first test environment
has n = 10 states in it. There are 90 different experiments
and m = 9 different actions. The likelihoods of a transition
are as follows:

𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖 = 1, … .9; 𝑗 = 1, … 9; 𝑘 = 𝑖; 𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖

= 1, … .9; 𝑗 = 1, … 9; 𝑘 = 𝑖 + 1; 𝑝𝑖𝑗𝑘

=
1

10
𝑓𝑜𝑟 𝑖 = 10; 𝑗 = 1, … 10; 𝑘 = 1, … 10

Otherwise, 𝑃𝑖𝑗𝑘 = 0 . S10 is the only state that enables for a

large amount of data to be collected.

RDIA (with settings 𝛽 = 0.5, 𝛾= 0.9, 𝜇= 0.1) discovers this
after a while and establishes a policy that drives the agent
to go from every other state to S10 as rapidly as possible.

Random exploration, on the other hand, spends the
majority of its time examining the states S1... S9, which is
quickly rendered worthless (informative). Table 2 shows
the results of random search vs the two RDIA variations
that worked best: RDIA based on entropy changes (𝐷(𝑡) =

 |∑ 𝑃𝑖𝑗𝑘
∗ (𝑡 + 1) 𝐼𝑛𝑃𝑖𝑗𝑘

∗ (𝑡 + 1) − ∑ 𝑃𝑖𝑗𝑘
∗ (𝑡 + 1) − 𝑃𝑖𝑗𝑘

∗ (𝑡)𝑘 |𝑘

 and RDIA based on probability changes

(𝐷(𝑡) = ∑ |𝑃𝑖𝑗𝑘
∗ (𝑡 + 1) − 𝑃𝑖𝑗𝑘

∗ (𝑡)|𝑘). Reinforcement driven

information acquisition takes a bit to figure out where it
can learn something new in the beginning. It soon gains
traction and outperforms random search. An expanded

Research Article ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)

 CC-BY-NC 2014, Asian Business Consortium | AJTP Page 111

setting. There are 100 states in the second test environment.
There are 10900 different experiments and m = 90 different
activities. The likelihoods of a transition are as follows:

𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖 = 1, … .89; 𝑗 = 1, … 89; 𝑘 = 𝑖; 𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖

= 1, … .89; 𝑗 = 1, … 89; 𝑘 = 𝑖 + 1; 𝑝𝑖𝑗𝑘

=
1

99
𝑓𝑜𝑟 𝑖 = 99; 𝑗 = 1, … 99; 𝑘 = 1, … 99

Otherwise, 𝑃𝑖𝑗𝑘 = 0. The second environment has a total

information content of 460.517018 (the sum of the entropies
of all state/action pairings' genuine transition probability
distributions).

Table 3 shows the number of time steps necessary to reach
specified entropy values for random search and RDIA
based on entropy changes (with parameters 𝛽 = 0.5, 𝛾= 0.9,
𝜇= 0.1). S100 is the only state that allows for the collection
of a large amount of data. RDIA notices this right away and
sets up a policy that forces the agent to shift to S100 as soon
as feasible from any other state. Random exploration, on
the other hand, spends a lot of time on states S1 through S99.

Table 2: Random search and two reinforcement driven
information acquisition variants, the evolutions of the sum
of KullbackLeibler distances between estimated and true
probability distributions are shown

Experiments Random

Search

RDIA

(Entropy)

RDIA

(prob.

Different)

1 204.92 204.92 204.92
1023 2.96 67.72 65.48
2048 3.39 40.58 21.97
4095 2.73 10.56 5.29
8191 3.71 4.07 3.87

16383 4.10 2.43 2.29
32767 3.42 1.26 1.43
65535 2.02 0.75 0.87

131072 1.57 0.53 0.58
262143 1.06 0.34 0.34

Table 3: Random search and for RDIA based on entropy
differences, this table shows the number of time steps
required to achieve given entropy values.

Goal Entropy Random Search RDIA

170 0.000003 0.0000011

370 0.00000029 0.0000025

459 0.0000000016 0.00000027

460 Unidentified 0.00000068

Because Q-learning requires some time to fix the method
for performing tests, the advantage of reinforcement-
driven information acquisition is not as evident for small
entropy margins as it is in later stages. However, when the
entropy margin approaches the optimum, reinforcement-
based information collection speeds up by at least an order
of magnitude.

 “The Exploitation/Exploration Trade-off.” Exploration
was studied apart from exploitation in this article. Is
there a “best” approach to combine the two? Should

reinforcement driven information acquisition be used for
which types of goal-directed learning? It is always
possible to create settings in which "curiosity" (the desire
to learn more about the world) may "kill the cat," or at
the very least have a bad impact on exploitation results.
Additional studies given in (Thrun and Moller, 1992)
demonstrate this: in one habitat described therein,
exploration aids in the speeding up of exploitation.
Curiosity, on the other hand, slows exploitation in a
different habitat. The “exploration/exploitation trade-
off” is still a hot topic (Paruchuri, 2015).

 Additional comparisons in the lab. Comparing
reinforcement driven information acquisition to better
competitors than random exploration, such as
Kaelbling's Interval Estimation algorithm (Kaelbling,
1993), will be intriguing.

 Approximators for functions. It will also be interesting to
use function approximators like backprop networks to
replace the Q-table. Despite the fact that the theoretical
foundations of combining Q-learning with function
approximators are still poor, previous experimental
work by multiple authors suggests that in some
circumstances, this may boost performance.

CONCLUSION

Sensor-imposed information restrictions must be dealt
with by intelligent control systems. When the agent's
sensors provide insufficient information or when the agent
must actively regulate its sensors to choose important
features, the internal decision issue it faces is invariably
non-Markov. It can be difficult to pick up these control
skills. We compared the results of several RDIA
modifications to the results of ordinary random
exploration. The advantage of reinforcement driven
information acquisition is not as apparent for tiny entropy
margins as it is in later stages since Q-learning takes some
time to fix the strategy for executing tests. Reinforcement-
based information gathering, on the other hand,
accelerates up by at least an order of magnitude as the
entropy margin near the optimum. Experiments show that
the resulting method, reinforcement driven information
acquisition (RDIA), is significantly faster at studying
specific NMEs than ordinary random exploration.

REFERENCES

Barto, A. G., R. S. Sutton and C. W. Anderson, 1983. Neuron-like
elements that can solve difficult learning control problems,
IEEE Truns. Syst. Man Cybern. 13 (5): 834-846.

Baum, E. B. 1991. Neural nets that learn in polynomial time from
examples and queries. IEEE Transactions on Neural Networks,
2(1):5–19.

Behnen, K. and Neuhaus, G. 1984. Grundkurs Stochastik. B. G.
Teubner, Stuttgart.

Bellman, R. E. 1983. Dynamic Programming (Princeton University
Press, Princeton, NJ, 1957). S. Ross, Introduction to Stochastic
Dynamic Programming (Academic Press, New York, 1983).

Bertsekas, D. P. 1987. Dynamic Progrummin~: Deterministic and
Stochastic Models (Prentice-Hall, Englewood Cliffs, NJ.

Bynagari and Amin: Information Acquisition Driven by Reinforcement in Non-Deterministic Environments (107-112)

Page 112 American Journal of Trade and Policy ● Vol 6 ● Issue 3/2019

Bynagari, N. B. (2015). Machine Learning and Artificial
Intelligence in Online Fake Transaction Alerting. Engineering
International, 3(2), 115-126.
https://doi.org/10.18034/ei.v3i2.566

Bynagari, N. B. (2016). Industrial Application of Internet of
Things. Asia Pacific Journal of Energy and Environment, 3(2), 75-
82. https://doi.org/10.18034/apjee.v3i2.576

Bynagari, N. B. (2017). Prediction of Human Population
Responses to Toxic Compounds by a Collaborative
Competition. Asian Journal of Humanity, Art and
Literature, 4(2), 147-156.
https://doi.org/10.18034/ajhal.v4i2.577

Bynagari, N. B. (2018). On the ChEMBL Platform, a Large-scale
Evaluation of Machine Learning Algorithms for Drug Target
Prediction. Asian Journal of Applied Science and Engineering, 7,
53–64. Retrieved from
https://upright.pub/index.php/ajase/article/view/31

Bynagari, N. B., & Fadziso, T. (2018). Theoretical Approaches of
Machine Learning to Schizophrenia. Engineering
International, 6(2), 155-168.
https://doi.org/10.18034/ei.v6i2.568

Cohn, D. A 1994. Neural network exploration using optimal
experiment design. In J. Cowan, G. Tesauro, and J. Alspector,
editors, Advances in Neural Information Processing Systems
(NIPS) 6, pages 679–686. Morgan Kaufmann.

Fedorov. V. V. 1972. Theory of optimal experiments. Academic
Press.

Ganapathy, A. (2016). Speech Emotion Recognition Using Deep
Learning Techniques. ABC Journal of Advanced Research, 5(2),
113-122. https://doi.org/10.18034/abcjar.v5i2.550

Ganapathy, A. (2017). Friendly URLs in the CMS and Power of
Global Ranking with Crawlers with Added
Security. Engineering International, 5(2), 87-96.
https://doi.org/10.18034/ei.v5i2.541

Ganapathy, A. (2018). Cascading Cache Layer in Content
Management System. Asian Business Review, 8(3), 177-182.
https://doi.org/10.18034/abr.v8i3.542

Holland, J. H. 1986. Escaping brittleness: the possibilities of
general-purpose learning algortihms applied to parallel rule-
based systems, in: Muchine Lenrnin~: An Artificial
Intelligence Approach II (Morgan Kaufmann, San Mateo, CA,
1986).

Hwang, J., J. Choi, S. Oh, and R. J. Marks. 1991. Query-based
learning applied to partially trained multilayer perceptrons.
IEEE Transactions on Neural Networks, 2(1):131–136, 1991.

Kaelbling. L. P. 1993. Learning in Embedded Systems. MIT Press.

MacKay, D. J. C. 1992. Information-based objective functions for
active data selection. Neural Computation, 4(2):550–604, 1992.

Neogy, T. K., & Bynagari, N. B. (2018). Gradient Descent is a
Technique for Learning to Learn. Asian Journal of Humanity,
Art and Literature, 5(2), 145-156.
https://doi.org/10.18034/ajhal.v5i2.578

Neogy, T. K., & Paruchuri, H. (2014). Machine Learning as a New
Search Engine Interface: An Overview. Engineering
International, 2(2), 103-112.
https://doi.org/10.18034/ei.v2i2.539

Paruchuri, H. (2015). Application of Artificial Neural Network to
ANPR: An Overview. ABC Journal of Advanced Research, 4(2),
143-152. https://doi.org/10.18034/abcjar.v4i2.549

Plutowski, M., G. Cottrell, and H. White. 1994. Learning Mackey-
Glass from 25 examples, plus or minus 2. In J. Cowan, G.
Tesauro, and J. Alspector, editors, Advances in Neural
Information Processing Systems (NIPS) 6, pages 1135–1142.
Morgan Kaufmann.

Schmidhuber J. and Storck, J. 1993. Reinforcement driven
information acquisition in nondeterministic environments.
Report.

Schmidhuber. J. 1991a. Curious model-building control systems.
In Proceedings of the International Joint Conference on
Neural Networks, Singapore, volume 2, pages 1458–1463.
IEEE press.

Schmidhuber. J. 1991b. A possibility for implementing curiosity
and boredom in model-building neural controllers. In J. A.
Meyer and S. W. Wilson, editors, Proc. of the International
Conference on Simulation of Adaptive Behavior: From
Animals to Animats, pages 222 – 227. MIT Press/Bradford
Books, 1991.

Storck. J. 1994. Reinforcement-Lernen und Modell bildung in
nicht-deterministischen Umgebungen.
Fortgeschrittenenpraktikum, Fakult¨at f¨ur Informatik,
Lehrstuhl Prof. Brauer, Technische Universit¨at M¨unchen.

Sutton, R.S. 1988. Learning to predict by the method of temporal
differences, Mach. Learn. 3 (1): 9-44.

Thrun S. and M¨oller. K. 1992 Active exploration in dynamic
environments. In D. S. Lippman, J. E. Moody, and D. S.
Touretzky, editors, Advances in Neural Information
Processing Systems (NIPS) 4, pages 531–538. Morgan
Kaufmann.

Vadlamudi, S. (2015). Enabling Trustworthiness in Artificial
Intelligence - A Detailed Discussion. Engineering
International, 3(2), 105-114.
https://doi.org/10.18034/ei.v3i2.519

Vadlamudi, S. (2016). What Impact does Internet of Things have
on Project Management in Project based Firms?. Asian
Business Review, 6(3), 179-186.
https://doi.org/10.18034/abr.v6i3.520

Vadlamudi, S. (2017). Stock Market Prediction using Machine
Learning: A Systematic Literature Review. American Journal of
Trade and Policy, 4(3), 123-128.
https://doi.org/10.18034/ajtp.v4i3.521

Vadlamudi, S. (2018). Agri-Food System and Artificial
Intelligence: Reconsidering Imperishability. Asian Journal of
Applied Science and Engineering, 7(1), 33-42. Retrieved from
https://journals.abc.us.org/index.php/ajase/article/view/
1192

Watkins. C. J. C. H. 1989. Learning from Delayed Rewards. PhD
thesis, King’s College, Oxford, University of Cambridge,
England.

Whitehead S. D. and Ballard, D. H.. 1991.A study of cooperative
mechanisms for faster reinforcement learning, Technical
Report 365, Computer Science Department, University of
Rochester, Rochester. NY.

Williams, R. J. 1986. Reinforcement learning in connectionist
networks, Technical Report ICS 8605, Institute for Cognitive
Science, University of California at San Diego.

--0--

https://doi.org/10.18034/ei.v3i2.566
https://doi.org/10.18034/apjee.v3i2.576
https://doi.org/10.18034/ajhal.v4i2.577
https://upright.pub/index.php/ajase/article/view/31
https://doi.org/10.18034/ei.v6i2.568
https://doi.org/10.18034/abcjar.v5i2.550
https://doi.org/10.18034/ei.v5i2.541
https://doi.org/10.18034/abr.v8i3.542
https://doi.org/10.18034/ajhal.v5i2.578
https://doi.org/10.18034/ei.v2i2.539
https://doi.org/10.18034/abcjar.v4i2.549
https://doi.org/10.18034/ei.v3i2.519
https://doi.org/10.18034/abr.v6i3.520
https://doi.org/10.18034/ajtp.v4i3.521
https://journals.abc.us.org/index.php/ajase/article/view/1192
https://journals.abc.us.org/index.php/ajase/article/view/1192

