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ABSTRACT 

What is the fastest way for an agent living in a non-deterministic Markov environment (NME) to learn 
about its statistical properties? The answer is to create "optimal" experiment sequences by carrying out 
action sequences that maximize expected knowledge gain. This idea is put into practice by integrating 
information theory and reinforcement learning techniques. Experiments demonstrate that the resulting 
method, reinforcement-driven information acquisition (RDIA), is substantially faster than standard 
random exploration for exploring particular NMEs. Exploration was studied apart from exploitation 
and we evaluated the performance of different reinforcement driven information acquisition variations 
to that of traditional random exploration. 
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INTRODUCTION 

Learning must be accounted for in computational theories 
of agent-environment interaction. To generate and retain 
intelligent agents, it is vital to learn. Robust real-world 
robots cannot be created just through precise 
programming. The real world is far too complex, 
idiosyncratic, and uncertain to know ahead of time, and 
computer languages are far too rigid and inflexible to make 
it possible to program alone. At least some of the burden 
of skill acquisition must be carried by intelligent agents. 
Furthermore, because the world does not stand still, agents 
must learn new abilities and adapt old ones to changes in 
the environment in order to maintain a high level of 
performance (Bynagari, 2018). 

Though there are many different types of learning and 
many different things that an agent might learn, all 
learning ultimately boils down to learning control. 
Anything learned is only valuable in terms of its impact on 
the agent's interaction with its environment, or in terms of 
the agent's ability to manipulate the environment to 
achieve the desired result (Ganapathy, 2017). 

It's necessary to model the environment for efficient 
reinforcement learning. What is the most cost-effective 
way to obtain a model of a non-deterministic Markov 

environment (NME)? The method described in this paper, 
known as Reinforcement Driven Information Acquisition 
(RDIA), builds on previous work on "query learning" and 
"experimental design" (Fedorov, 1972) for an overview, 
and (Baum, 1991; MacKay, 1992; Hwang et al., 1991; 
Plutowski et al., 1994; Cohn, 1994) for more recent 
contributions) as well as "active exploration" 
(Schmidhuber, 1991a; Schmidhuber, 1991b; Storck, 1994; 
Paruchuri, 2015). Information gain and reinforcement 
learning are combined in this strategy. The latter is utilized 
to create exploratory tactics that make use of the former. 
Experiments show that reinforcement-driven information 
acquisition has a number of significant benefits. 

Objectives of this Study 

This study is aimed to model the environment for efficient 
reinforcement learning using Reinforcement Driven 
Information Acquisition (RDIA). 

LITERATURE REVIEW 

The fundamental concepts of reinforcement learning are 
discussed in this section. To begin, we'll go through a basic 
model of agent-environment interaction. The principles of 
Markov decision processes are then discussed, as well as 
Q-learning (Watkins, 1989; Vadlamudi, 2018), a prominent 
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reinforcement learning technique. However, a 
comprehensive examination of Markov decision processes 
and reinforcement learning is beyond the scope of this 
article (Bynagari, 2016; Bynagari & Fadziso, 2018; Neogy & 
Bynagari, 2018). Throughout the article, we'll concentrate 
on Q-learning and the challenges it faces as a result of non-
Markov decision processes. Other algorithms (Barto et al., 
1983; Holland, 1986; Sutton, 1990; Williams, 1986) have met 
with the same fate. The reader may wish to study 
(Bertsekas, 1987) and (Watkins, 1989), for a more thorough 
examination of Markov decision processes and Q-learning 
as well as for a broad overview of reinforcement learning 
(Whitehead and Ballard, 1991; Ganapathy, 2016). 

MODELING AGENT-ENVIRONMENT INTERACTION 

The paradigm of agent-environment interaction shown in 
Figure 1 is frequently utilized in reinforcement learning. 
Two synchronized finite state automatons interact in a 
discrete-time cyclical process to represent the agent and 
the environment in this paradigm. 

 

Figure 1: A simple model of agent environment interaction 

The following sequence of events occurs at each time point. 

 The agent detects the environment's status. 

 The agent picks an action to take based on the present 
condition. 

 The environment transitions to a new state and 
creates a payout based on the present state and the 
action chosen by the agent. 

 The commission is returned to the agent. 

THE ENVIRONMENT 

A Markov decision process is used to model the 
environment. A Markov decision process is defined by the 
tuple (S, A, T, R), where S represents the set of potential 
states, A represents the set of possible actions, T represents 
the state transition function, and R represents the reward 
function. At each one time, the environment is in one of S's 
states and accepts one of A's actions. Typically, S and A are 
believed to be discrete and finite. The transition function, 
T, models state transitions by mapping state-action 
pairings into new states (T: S x A -+ S). In general, the 
transition function is probabilistic, and it is usually 
expressed in terms of a collection of transition 
probabilities, 𝑝𝑥,𝑦 (𝑎)? 

𝑃𝑥,𝑦 (𝑎) = 𝑃𝑟𝑜𝑏 𝑇(𝑥, 𝑎) = 𝑦) 

The reward function R, which transforms state-action pairs 
into scalar-valued rewards (𝑅: 𝑆 𝑥 𝐴 → ℝ), determines the 

payoffs provided by the environment. It's also possible that 
the reward function is probabilistic. 

The effects of actions (i.e., the next state and the immediate 
reward generated) in a Markov decision process (MDP) are 
solely dependent on the present state. This type of process 
model is stated to be memoryless and satisfy the Markov 
property. The Markov feature is crucial to this 
environment model because it indicates that knowing the 
current state is always sufficient for optimum control (i.e., 
maximizing the reward received overtime) (Bertsekas, 
1987; Vadlamudi, 2017). 

As a result, while it may be conceivable to create action-
selection strategies that rely on additional information (a 
history trace), these strategies will never be able to surpass 
the best decision strategies that rely just on current state 
knowledge. The agent is in charge of coming up with 
control actions. It detects the current state, chooses an 
action, observes the new state, and rewards the result at 
each time step (Vadlamudi, 2016). As a form of learning 
feedback, rewards are used. A control policy, which 
prescribes an action to take for each state, is one approach 
to specify an agent's behavior. In formal terms, a policy 𝑓 
is a function from states to actions (𝑓: 𝑆 → 𝐴), with 𝑓(𝑥) 
denoting the action to be taken in state 𝑥. 

The goal of reinforcement learning is for the agent to 
develop a control policy that maximizes some measure of 
total reward over time (Bynagari, 2015). Any number of 
reward measures can be employed in theory, but the most 
common is one based on a discounted total of the benefit 
received over time (Bynagari, 2017). This amount is known 
as the return, and it is defined as follows for time t: 

𝑟𝑒𝑡𝑢𝑟𝑛 (𝑡) =  ∑ 𝛾𝑛𝑟𝑡+𝑛

∞

𝑛=0

 

where y, also known as the temporal discount factor, is a 
constant that ranges from 0 to 1, and 𝑟𝑡+𝑛  is the reward 
received at time t + n. The agent's goal is to find a strategy 
that maximizes the expected return because the process 
may be stochastic for time t, defined as 𝑉𝑓(𝑥)  the value 

function for policy  𝑓, as the expected return for a fixed 
policy 𝑓, given that the process starts in state 𝑥 and then 
follows policy 𝑓. The agent's goal is to find 𝑓∗, a policy that 
is uniformly excellent for all feasible states. To put it 
another way, find 𝑓∗ in such a way that- 

𝑉𝑓∗ (𝑥) = max
𝑓

𝑉𝑓  (𝑥) ⋁𝑥  ∈ 𝑆 

The fact that 𝑓∗  is properly specified and guaranteed to 
exist is an important property of MDPs. The Optima& 
Theorem from dynamic programming [9], in particular, 
assures that for a discrete temporal, discrete-state Markov 
decision process, an optimal deterministic policy exists at 
all times. A policy 𝑓 is also optimal if and only if it fulfills 
the following relationship: 

𝑄𝑓  (𝑥, 𝑓(𝑥)) =  max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑎)) ⋁𝑥  ∈ 𝑆 



Research Article                                                                                                                                                                                                   ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)                                                                                                                                                                   
 

                             CC-BY-NC 2014, Asian Business Consortium | AJTP                                             Page 109 

 

The action-value function 𝑄𝑓  (𝑥, 𝑎)  is defined as the 

expected return if the agent starts in state x, performs 
action a once, and then follows policy 𝑓 [9, l0].   

𝑓∗ (𝑥) = 𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑄𝑓∗ (𝑥, 𝑎) =  max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑏)) ⋁𝑥  ∈

𝑆 states that a policy is optimal if and only if it prescribes 
an action that maximizes the local "action-value" in each 
state. That is to say, 

𝑓∗ (𝑥) = 𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑄𝑓∗ (𝑥, 𝑎) =  max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑏)) ⋁𝑥  ∈ 𝑆 

And 

𝑉𝑓∗ (𝑥) = max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑎)) ⋁𝑥  ∈ 𝑆 

The set of action-values for which 𝑓∗ (𝑥) =

𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑄𝑓∗ (𝑥, 𝑎) =  max
𝑎 ∈𝐴

(𝑄𝑓(𝑥, 𝑏)) ⋁𝑥  ∈ 𝑆 holds for a 

particular MDP is unique. The ideal action-value function 
Q* for the MDP is said to be defined by these values. The 
best policy can be determined directly using dynamic 
programming techniques (Bellman, 1957, Bertsekas, 1987; 
Ross, 1983; Ganapathy, 2018) if an MDP is thoroughly 
known (including the transition probabilities and reward 
distributions). However, in many circumstances, the 
environment's structure and dynamics remain unknown. 
In these conditions, the agent cannot immediately compute 
the best policy; instead, it must investigate its 
surroundings and learn an effective control policy through 
trial and error (see Table 1). 

Table 1: A simple version of the one-step Q-learning 
algorithm 

𝑄 ← a set of initial values for the action-value function 
(e.g uniformly zero) 
Repeat forever; 

1. 𝑥 ← the current state 
2. Select an action a to execute that is usually 

consistent with  𝑓(𝑥) but occasionally an 
alternate. 

3. Execute action a, and let y be the next state and 
r be the reward received. 

4. Update 𝑄(𝑥, 𝑎): 
𝑄 (𝑥, 𝑎) ← (1 −  𝛼)𝑄(𝑥, 𝑎) +  𝛼[𝑟 +  𝛾𝑈(𝑦)] 

Where 𝑈(𝑦) = 𝑄(𝑦, 𝑓(𝑦)) 

Here for each 𝑥 ∈ 𝑆: 𝑓(𝑥) ←  a such that 
𝑄(𝑥, 𝑎) =  𝑚𝑎𝑥𝑏 ∈𝐴𝑄(𝑥, 𝑏) 

Q-LEARNING / BASIC SETUP  

An NME is home to an agent. The environment is in state S(t) 
(one of n possible states S1; S2;…Sn) at a discrete-time step t, 
and the agent acts a(t) (one of m possible actions a1; a2;…am). 
This has an impact on the environment: If S(t) = Si and a(t) = 
aj, then S(t + 1) = Sk with probability 𝑝𝑖𝑗𝑘  𝑆(𝑡 + 1) =  𝑆𝑘. There 

is reinforcement R(t) at particular moments t. 

The goal is to maximize the discounted total of future 
reinforcement ∑ 𝛾𝑘𝑅(𝑡 + 𝑘 + 1) (𝑤ℎ𝑒𝑟𝑒 0 <  𝛾 < 1) 𝑚

𝑘=0 at 
time t (where 0 1). For this, we employ Watkins' Q-learning 

(Watkins, 1989): The agent's evaluation Q(S; a) (which 
starts at zero) for the state/action pair is (S; a). The 
algorithm's primary loop is as follows: 

1. Take note of the current situation S(t). Pick p ϵ [0; 1] at 
random. If p ≤ µ ϵ [0; 1], choose a number at random (t). 
Otherwise, choose a (t) so that Q (S (t); a (t)) is the largest. 
2. Run a (t), paying attention to S(t + 1) and R(t). 

3. 𝑄(𝑆(𝑡), 𝑎(𝑡)) ← (1 −  𝛽)𝑄(𝑆(𝑡), 𝑎(𝑡)) +  𝛽(𝑅(𝑡) +

 𝛾 𝑚𝑎𝑥𝑏𝑄(𝑆(𝑡 + 1) 𝑤ℎ𝑒𝑟𝑒 0 <  𝛾  < 1, 0 <  𝛽 < 1 1st step 

METHODS 

Model Building with reinforcement driven information 

acquisition 

The goal of our agent is to create a model of the pijk 
transition probabilities. RDIA is a type of unsupervised 
reinforcement learning that is investigated separately from 
goal-directed reinforcement learning tasks "It builds on 
prior research on active exploration" (Schmidhuber, 1991b; 
Schmidhuber, 1991a; Thrun and Moller, 1992).  

Previous approaches were limited to  

 deterministic settings (they did not address the 
overall problem of learning a model of a 
nondeterministic NME's statistical features), and  

 Were built on ad-hoc elements rather than relying on 
notions from information theory.  

Collecting Machine Learning estimates 

The agent has a counter cij for each state/action 
combination (or experiment) (Si; aj), whose value at time 𝑡, 
cij (t), matches the number of the agent's past experiences 
with that state/action pair (or experiment) (Si; aj ). In 
addition, there are n counters cijk for each state/action pair 
(Si; aj),  𝑘 = 1 … 𝑛. The number of past encounters the agent 
had with (Si; aj), where the following state was Sk, is equal 
to the value of cijk at time𝑡, cijk(t). It's worth noting that cij (t) 
= ∑ 𝑐𝑖𝑗𝑘  (𝑡)𝑘 . If cij (t) > 0 at time 𝑡, then 

𝑝𝑖𝑗𝑘
∗  (𝑡) =  

𝑐𝑖𝑗𝑘  (𝑡)

𝑐𝑖𝑗(𝑡)
 

To some degree arbitrarily, 𝑝𝑖𝑗𝑘
∗  (𝑡) =  0, if cij (t) = 0. As a 

result, the 𝑝𝑖𝑗𝑘
∗  (𝑡) do not satisfy the conditions of a 

probability distribution before the agent has undertaken 
any trials of the kind (Si; aj). For cij (t) > 0, the 
𝑝𝑖𝑗𝑘

∗  (𝑡) construct a maximum likelihood model of the 

probabilities of the alternative next states (compatible with 
the agent's previous experiences). 

Measuring information gain 

If the agent conducts an experiment by performing action 
a (t) = aj in state S(t) = Si, and the new state is S(t + 1) = Sk, 
then 𝑝𝑖𝑗𝑘

∗  (𝑡) will, in general, differ from 𝑝𝑖𝑗𝑘
∗  (𝑡 + 1). The 

agent has gained a piece of information by watching the 
outcome of the experiment, which will improve the 
accuracy of the estimators. We'll go through three different 
ways to measure the agent's success in the next section 
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(Neogy & Paruchuri, 2014; Vadlamudi, 2015). The agent's 
progress will be used to strengthen it in all three scenarios. 

i. According to standard statistics, the approximate 
confidence area of a multinomial distribution 

satisfies  𝑃 (𝐸2(𝑃𝑖𝑗𝑘,
∗  𝑃𝑖𝑗𝑘) <  

𝑥𝑛−1,𝛼
2

𝑐𝑖𝑘
) = 1 − 𝛼 , where 𝛼 

is a particular confidence level (Behnen and Neuhaus, 

1984, p. 301), and 𝐸2(𝑃𝑖𝑗𝑘
∗ , 𝑝𝑖𝑗𝑘) =  ∑

(𝑃𝑖𝑗𝑘
∗ ,𝑝𝑖𝑗𝑘)2

𝑃𝑖𝑗𝑘

𝑛
𝑘=1  

The weighted squared error of the 𝑃𝑖𝑗𝑘
∗ estimators is 𝑝𝑖𝑗𝑘  

(Pearson's 2-distance for multinomial distributions is a classic 
technique of quantifying estimators' departures from real 
probabilities, (Behnen and Neuhaus, 1984p. 233, 301). The 
upper bound for 𝐸2  with confidence level 𝑋𝑛∗1,𝛼

2 , (the -
quantile of the 𝑋𝑛∗1

2 -distribution, which is independent of 𝑐𝑖𝑗!) 

divided by 𝑐𝑖𝑗. 
1

𝑐𝑖𝑗
 is proportional to this upper bound. Reduce 

the dispersion of the estimators by lowering 𝐸2 upper bound, 
which is a major goal of optimum experiment design (Cohn, 
1994; Fedorov, 1972). As a result, state/action combinations 
with small counters 𝑐𝑖𝑗  are preferred when choosing a new 

experiment. In partially deterministic contexts, however, 
fewer "deterministic" tests might be preferable to non-
deterministic ones. 

𝐷(𝑡) =  ∑|𝑃𝑖𝑗𝑘
∗  (𝑡 + 1) −  𝑃𝑖𝑗𝑘

∗  (𝑡)|

𝑘

 

The information gain (the agent's current 
progress) for 𝑐𝑖𝑗  (𝑡) > 0 and D(t) = 0 for 𝑐𝑖𝑗  (𝑡) =  0 

are used to account for this new factor. Note that 
for big 𝑐𝑖𝑗, 𝑃𝑖𝑗𝑘

∗  (𝑡 + 1) −  𝑃𝑖𝑗𝑘
∗  (𝑡) is proportional to 

1

𝑐𝑖𝑗
, but for deterministic state/action pairs, these 

differences are zero (unlike 
1

𝑐𝑖𝑗
 itself). 

ii. We may quantify the agent's progress by measuring 
the entropy difference between the probability 
distributions given by the 𝑃𝑖𝑗𝑘

∗  (𝑡 + 1) values and the 

𝑃𝑖𝑗𝑘
∗  (𝑡) values, because the estimators reflect 

probability distributions over the next states Sk. It is 
possible to rephrase:  

𝐷(𝑡) =  |∑ 𝑃𝑖𝑗𝑘
∗  (𝑡 + 1) 𝐼𝑛𝑃𝑖𝑗𝑘

∗  (𝑡 + 1) − ∑ 𝑃𝑖𝑗𝑘
∗  (𝑡 + 1) −  𝑃𝑖𝑗𝑘

∗  (𝑡)

𝑘

|

𝑘

 

if 𝑐𝑖𝑗  is greater than 0. (For 𝑃𝑖𝑗𝑘
∗    = 0, we use the formula 

𝑃𝑖𝑗𝑘
∗  𝐼𝑛𝑃𝑖𝑗𝑘

∗ = 0). The entropy of the related MLM is assumed to 

be zero if 𝑐𝑖𝑗(𝑡) = 0 (before the agent has undertaken any 

experiments of type (𝑆𝑖 , 𝑎𝑗). D(t) will also be 0 in this scenario. 

D(t) can be proven to be proportional to 
1

𝑐𝑖𝑗
 for large 𝑐𝑖𝑗  once 

again (and zero in the deterministic case). High entropy 
probability distributions result in high D(t), which is exactly 
what we want: high entropy distributions should be 
investigated more than low entropy distributions (bias 
towards "nondeterministic" state/action combinations). 

iii. The Kullback Leibler distance is a related method for 
determining probability distribution changes. 

𝐷(𝑡) =  ∑ 𝑑𝑘(𝑡),
𝑘

 

Where  

𝑑𝑘(𝑡) = 0 𝑖𝑓 𝑃𝑖𝑗𝑘
∗  (𝑡 + 1) = 0  or 𝑃𝑖𝑗𝑘

∗  (𝑡) = 0 , and 𝑑𝑘(𝑡) =

 𝑃𝑖𝑗𝑘
∗  (𝑡 + 1)𝐼𝑛

(𝑃𝑖𝑗𝑘
∗ (𝑡+1)

𝑃𝑖𝑗𝑘
∗ (𝑡)

  

This metric has qualities similar to the entropy difference 
described above, but it is more sensitive to increases in the 
greatest 𝑃𝑖𝑗𝑘

∗  values (emphasis on changes of probability 

distributions tending towards determinism). The hint is 
that the agent's progress D(t) is always used as the 
reinforcement R(t) for the Q-Learning algorithm from the 
beginning. Because an experiment at time t changes only n 
estimates (the 𝑛𝑃𝑖𝑗𝑘

∗  (𝑡 + 1))  associated with aj = a(t) and Si 

= S(t)), and because D(t) can always be computed in O(n) 
operations, the algorithm's total complexity per time step 
is constrained by O(n) operations (n).  The particular 
definition of D(t) should not make a significant impact 
because all three D(t) versions promote nondeterminism 

and are proportional to 
1

𝑐𝑖𝑗
 for big 𝑐𝑖𝑗.  

RESULTS AND DISCUSSION 

Simulations of reinforcement driven information 

acquisition 

We evaluated the performance of different reinforcement-
driven information acquisition variations to that of 
traditional random exploration (variants of random 
exploration are the approaches used by the majority of 
authors). This is a small space. The first test environment 
has n = 10 states in it. There are 90 different experiments 
and m = 9 different actions. The likelihoods of a transition 
are as follows: 

𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖 = 1, … .9; 𝑗 = 1, … 9; 𝑘 = 𝑖;  𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖

= 1, … .9; 𝑗 = 1, … 9; 𝑘 = 𝑖 + 1; 𝑝𝑖𝑗𝑘

=
1

10
𝑓𝑜𝑟 𝑖 = 10;  𝑗 = 1, … 10; 𝑘 = 1, … 10 

Otherwise, 𝑃𝑖𝑗𝑘 = 0 . S10 is the only state that enables for a 

large amount of data to be collected. 

RDIA (with settings 𝛽 = 0.5, 𝛾= 0.9, 𝜇= 0.1) discovers this 
after a while and establishes a policy that drives the agent 
to go from every other state to S10 as rapidly as possible. 

Random exploration, on the other hand, spends the 
majority of its time examining the states S1... S9, which is 
quickly rendered worthless (informative). Table 2 shows 
the results of random search vs the two RDIA variations 
that worked best: RDIA based on entropy changes (𝐷(𝑡) =

 |∑ 𝑃𝑖𝑗𝑘
∗  (𝑡 + 1) 𝐼𝑛𝑃𝑖𝑗𝑘

∗  (𝑡 + 1) − ∑ 𝑃𝑖𝑗𝑘
∗  (𝑡 + 1) −  𝑃𝑖𝑗𝑘

∗  (𝑡)𝑘 |𝑘  

 and RDIA based on probability changes  

(𝐷(𝑡) =  ∑ |𝑃𝑖𝑗𝑘
∗  (𝑡 + 1) −  𝑃𝑖𝑗𝑘

∗  (𝑡)|𝑘 ). Reinforcement driven 

information acquisition takes a bit to figure out where it 
can learn something new in the beginning. It soon gains 
traction and outperforms random search. An expanded 



Research Article                                                                                                                                                                                                   ISSN 2313-4747 (Print); ISSN 2313-4755 (Online)                                                                                                                                                                   
 

                             CC-BY-NC 2014, Asian Business Consortium | AJTP                                             Page 111 

 

setting. There are 100 states in the second test environment. 
There are 10900 different experiments and m = 90 different 
activities. The likelihoods of a transition are as follows: 

𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖 = 1, … .89; 𝑗 = 1, … 89; 𝑘 = 𝑖; 𝑝𝑖𝑗𝑘 = 1 𝑓𝑜𝑟 𝑖

= 1, … .89; 𝑗 = 1, … 89; 𝑘 = 𝑖 + 1; 𝑝𝑖𝑗𝑘

=
1

99
𝑓𝑜𝑟 𝑖 = 99;  𝑗 = 1, … 99; 𝑘 = 1, … 99 

Otherwise, 𝑃𝑖𝑗𝑘 = 0. The second environment has a total 

information content of 460.517018 (the sum of the entropies 
of all state/action pairings' genuine transition probability 
distributions). 

Table 3 shows the number of time steps necessary to reach 
specified entropy values for random search and RDIA 
based on entropy changes (with parameters 𝛽 = 0.5, 𝛾= 0.9, 
𝜇= 0.1). S100 is the only state that allows for the collection 
of a large amount of data. RDIA notices this right away and 
sets up a policy that forces the agent to shift to S100 as soon 
as feasible from any other state. Random exploration, on 
the other hand, spends a lot of time on states S1 through S99. 

Table 2: Random search and two reinforcement driven 
information acquisition variants, the evolutions of the sum 
of KullbackLeibler distances between estimated and true 
probability distributions are shown 

Experiments Random  

Search 

RDIA  

(Entropy) 

RDIA  

(prob. 

Different) 

1 204.92 204.92 204.92 
1023 2.96 67.72 65.48 
2048 3.39 40.58 21.97 
4095 2.73 10.56 5.29 
8191 3.71 4.07 3.87 

16383 4.10 2.43 2.29 
32767 3.42 1.26 1.43 
65535 2.02 0.75 0.87 

131072 1.57 0.53 0.58 
262143 1.06 0.34 0.34 

Table 3: Random search and for RDIA based on entropy 
differences, this table shows the number of time steps 
required to achieve given entropy values. 

Goal Entropy Random Search RDIA 

170 0.000003 0.0000011 

370 0.00000029 0.0000025 

459 0.0000000016 0.00000027 

460 Unidentified 0.00000068 

Because Q-learning requires some time to fix the method 
for performing tests, the advantage of reinforcement-
driven information acquisition is not as evident for small 
entropy margins as it is in later stages. However, when the 
entropy margin approaches the optimum, reinforcement-
based information collection speeds up by at least an order 
of magnitude. 

 “The Exploitation/Exploration Trade-off.” Exploration 
was studied apart from exploitation in this article. Is 
there a “best” approach to combine the two? Should 

reinforcement driven information acquisition be used for 
which types of goal-directed learning? It is always 
possible to create settings in which "curiosity" (the desire 
to learn more about the world) may "kill the cat," or at 
the very least have a bad impact on exploitation results. 
Additional studies given in (Thrun and Moller, 1992) 
demonstrate this: in one habitat described therein, 
exploration aids in the speeding up of exploitation. 
Curiosity, on the other hand, slows exploitation in a 
different habitat. The “exploration/exploitation trade-
off” is still a hot topic (Paruchuri, 2015). 

 Additional comparisons in the lab. Comparing 
reinforcement driven information acquisition to better 
competitors than random exploration, such as 
Kaelbling's Interval Estimation algorithm (Kaelbling, 
1993), will be intriguing. 

 Approximators for functions. It will also be interesting to 
use function approximators like backprop networks to 
replace the Q-table. Despite the fact that the theoretical 
foundations of combining Q-learning with function 
approximators are still poor, previous experimental 
work by multiple authors suggests that in some 
circumstances, this may boost performance. 

CONCLUSION 

Sensor-imposed information restrictions must be dealt 
with by intelligent control systems. When the agent's 
sensors provide insufficient information or when the agent 
must actively regulate its sensors to choose important 
features, the internal decision issue it faces is invariably 
non-Markov. It can be difficult to pick up these control 
skills. We compared the results of several RDIA 
modifications to the results of ordinary random 
exploration. The advantage of reinforcement driven 
information acquisition is not as apparent for tiny entropy 
margins as it is in later stages since Q-learning takes some 
time to fix the strategy for executing tests. Reinforcement-
based information gathering, on the other hand, 
accelerates up by at least an order of magnitude as the 
entropy margin near the optimum. Experiments show that 
the resulting method, reinforcement driven information 
acquisition (RDIA), is significantly faster at studying 
specific NMEs than ordinary random exploration.  
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